{"title":"上风逐部分求和有限差分:误差估算和 WENO 方法","authors":"Yan Jiang, Siyang Wang","doi":"10.1007/s10915-024-02622-1","DOIUrl":null,"url":null,"abstract":"<p>High order upwind summation-by-parts finite difference operators have recently been developed. When combined with the simultaneous approximation term method to impose boundary conditions, the method converges faster than using traditional summation-by-parts operators. We prove the convergence rate by the normal mode analysis for such methods for a class of hyperbolic partial differential equations. Our analysis shows that the penalty parameter for imposing boundary conditions affects the convergence rate for stable methods. In addition, to solve problems with discontinuous data, we extend the method to also have the weighted essentially nonoscillatory property. The overall method is stable, achieves high order accuracy for smooth problems, and is capable of solving problems with discontinuities.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upwind Summation-by-parts Finite Differences: error Estimates and WENO methodology\",\"authors\":\"Yan Jiang, Siyang Wang\",\"doi\":\"10.1007/s10915-024-02622-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High order upwind summation-by-parts finite difference operators have recently been developed. When combined with the simultaneous approximation term method to impose boundary conditions, the method converges faster than using traditional summation-by-parts operators. We prove the convergence rate by the normal mode analysis for such methods for a class of hyperbolic partial differential equations. Our analysis shows that the penalty parameter for imposing boundary conditions affects the convergence rate for stable methods. In addition, to solve problems with discontinuous data, we extend the method to also have the weighted essentially nonoscillatory property. The overall method is stable, achieves high order accuracy for smooth problems, and is capable of solving problems with discontinuities.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02622-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02622-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Upwind Summation-by-parts Finite Differences: error Estimates and WENO methodology
High order upwind summation-by-parts finite difference operators have recently been developed. When combined with the simultaneous approximation term method to impose boundary conditions, the method converges faster than using traditional summation-by-parts operators. We prove the convergence rate by the normal mode analysis for such methods for a class of hyperbolic partial differential equations. Our analysis shows that the penalty parameter for imposing boundary conditions affects the convergence rate for stable methods. In addition, to solve problems with discontinuous data, we extend the method to also have the weighted essentially nonoscillatory property. The overall method is stable, achieves high order accuracy for smooth problems, and is capable of solving problems with discontinuities.