Jie Kang, Jie Ren, Songtao Hu, Hengle Guo, Kaixuan Chen, Ting Zhuang, Shenghao Nan, Jiaheng Sui
{"title":"不腐烂颗粒含量对砂土窒息机制和渗透性演变的影响","authors":"Jie Kang, Jie Ren, Songtao Hu, Hengle Guo, Kaixuan Chen, Ting Zhuang, Shenghao Nan, Jiaheng Sui","doi":"10.1007/s11440-024-02375-z","DOIUrl":null,"url":null,"abstract":"<p>Suffusion is a typical type of internal erosion that is an important factor leading to the failure of dams and dikes. In this paper, fine particles are divided into erodible particles and non-erodible particles, and the soil suffusion mechanism is investigated by laboratory tests and CFD_DEM simulations when the content of erodible particles (<i>F</i><sub>c</sub>) and non-erodible particles (<i>F</i><sub>z</sub>) is 15% and 5%, 10% and 10%, and 5% and 15%. The global mean permeability coefficient (<i>k</i><sub>av</sub>) and local permeability coefficient (<i>k</i><sub>i–j</sub>) were calculated by monitoring the water head in the seepage path of the sample. The results show that with increasing non-erodible particle content, the difficulty of soil suffusion increases gradually. When soil suffusion occurs, the loss of fine particles starts from the seepage outlet area and the influent area, and the non-erodible particles have little influence on the particle loss process in these two areas. After the occurrence of suffusion, the number of weak contact chains is obviously reduced, while the strong contact chains are basically stable. When <i>F</i><sub>z</sub> = 5% and <i>F</i><sub>z</sub> = 10%, the average permeability coefficient of the soil after suffusion expands to 2.21–1.60 times that of the initial state, and the corresponding values of the CFD_DEM simulation are 2.14–1.86 times.</p>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of non-erodible particle content on the mechanism of suffusion and the evolution of permeability of sandy soil\",\"authors\":\"Jie Kang, Jie Ren, Songtao Hu, Hengle Guo, Kaixuan Chen, Ting Zhuang, Shenghao Nan, Jiaheng Sui\",\"doi\":\"10.1007/s11440-024-02375-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suffusion is a typical type of internal erosion that is an important factor leading to the failure of dams and dikes. In this paper, fine particles are divided into erodible particles and non-erodible particles, and the soil suffusion mechanism is investigated by laboratory tests and CFD_DEM simulations when the content of erodible particles (<i>F</i><sub>c</sub>) and non-erodible particles (<i>F</i><sub>z</sub>) is 15% and 5%, 10% and 10%, and 5% and 15%. The global mean permeability coefficient (<i>k</i><sub>av</sub>) and local permeability coefficient (<i>k</i><sub>i–j</sub>) were calculated by monitoring the water head in the seepage path of the sample. The results show that with increasing non-erodible particle content, the difficulty of soil suffusion increases gradually. When soil suffusion occurs, the loss of fine particles starts from the seepage outlet area and the influent area, and the non-erodible particles have little influence on the particle loss process in these two areas. After the occurrence of suffusion, the number of weak contact chains is obviously reduced, while the strong contact chains are basically stable. When <i>F</i><sub>z</sub> = 5% and <i>F</i><sub>z</sub> = 10%, the average permeability coefficient of the soil after suffusion expands to 2.21–1.60 times that of the initial state, and the corresponding values of the CFD_DEM simulation are 2.14–1.86 times.</p>\",\"PeriodicalId\":49308,\"journal\":{\"name\":\"Acta Geotechnica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11440-024-02375-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11440-024-02375-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Effect of non-erodible particle content on the mechanism of suffusion and the evolution of permeability of sandy soil
Suffusion is a typical type of internal erosion that is an important factor leading to the failure of dams and dikes. In this paper, fine particles are divided into erodible particles and non-erodible particles, and the soil suffusion mechanism is investigated by laboratory tests and CFD_DEM simulations when the content of erodible particles (Fc) and non-erodible particles (Fz) is 15% and 5%, 10% and 10%, and 5% and 15%. The global mean permeability coefficient (kav) and local permeability coefficient (ki–j) were calculated by monitoring the water head in the seepage path of the sample. The results show that with increasing non-erodible particle content, the difficulty of soil suffusion increases gradually. When soil suffusion occurs, the loss of fine particles starts from the seepage outlet area and the influent area, and the non-erodible particles have little influence on the particle loss process in these two areas. After the occurrence of suffusion, the number of weak contact chains is obviously reduced, while the strong contact chains are basically stable. When Fz = 5% and Fz = 10%, the average permeability coefficient of the soil after suffusion expands to 2.21–1.60 times that of the initial state, and the corresponding values of the CFD_DEM simulation are 2.14–1.86 times.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.