从韦尔多拓扑看 Toric Orbifolds 的同调类型

Tao Gong
{"title":"从韦尔多拓扑看 Toric Orbifolds 的同调类型","authors":"Tao Gong","doi":"arxiv-2407.16070","DOIUrl":null,"url":null,"abstract":"Given a reduced crystallographic root system with a fixed simple system, it\nis associated to a Weyl group $W$, parabolic subgroups $W_K$'s and a polytope\n$P$ which is the convex hull of a dominant weight. The quotient $P/W_K$ can be\nidentified with a polytope. Polytopes $P$ and $P/W_K$ are associated to toric\nvarieties $X_P$ and $X_{P/W_K}$ respectively. It turns out the underlying\ntopological spaces $X_P/W_K$ and $X_{P/W_K}$ are homotopy equivalent, when\nconsidering the polytopes in the real span of the root lattice or of the weight\nlattice.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotopy Types Of Toric Orbifolds From Weyl Polytopes\",\"authors\":\"Tao Gong\",\"doi\":\"arxiv-2407.16070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a reduced crystallographic root system with a fixed simple system, it\\nis associated to a Weyl group $W$, parabolic subgroups $W_K$'s and a polytope\\n$P$ which is the convex hull of a dominant weight. The quotient $P/W_K$ can be\\nidentified with a polytope. Polytopes $P$ and $P/W_K$ are associated to toric\\nvarieties $X_P$ and $X_{P/W_K}$ respectively. It turns out the underlying\\ntopological spaces $X_P/W_K$ and $X_{P/W_K}$ are homotopy equivalent, when\\nconsidering the polytopes in the real span of the root lattice or of the weight\\nlattice.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.16070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个具有固定简单系统的还原晶根系统,它与韦尔群 $W$、抛物子群 $W_K$'s 和多面体 $P$ 相关联,而多面体 $P$ 是主重的凸壳。商$P/W_K$可以与多面体相识别。多面体 $P$ 和 $P/W_K$ 分别与环面 $X_P$ 和 $X_{P/W_K}$ 相关联。当考虑根网格或权重网格实跨中的多面体时,发现底层拓扑空间 $X_P/W_K$ 和 $X_{P/W_K}$ 是同调等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopy Types Of Toric Orbifolds From Weyl Polytopes
Given a reduced crystallographic root system with a fixed simple system, it is associated to a Weyl group $W$, parabolic subgroups $W_K$'s and a polytope $P$ which is the convex hull of a dominant weight. The quotient $P/W_K$ can be identified with a polytope. Polytopes $P$ and $P/W_K$ are associated to toric varieties $X_P$ and $X_{P/W_K}$ respectively. It turns out the underlying topological spaces $X_P/W_K$ and $X_{P/W_K}$ are homotopy equivalent, when considering the polytopes in the real span of the root lattice or of the weight lattice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信