从组合的角度看奇维复数二次元的等变同调

Shintaro Kuroki, Bidhan Paul
{"title":"从组合的角度看奇维复数二次元的等变同调","authors":"Shintaro Kuroki, Bidhan Paul","doi":"arxiv-2407.17921","DOIUrl":null,"url":null,"abstract":"This paper aims to determine the ring structure of the torus equivariant\ncohomology of odd-dimensional complex quadrics by computing the graph\nequivariant cohomology of their corresponding GKM graphs. We show that its\ngraph equivariant cohomology is generated by three types of subgraphs in the\nGKM graph, which are subject to four different types of relations. Furthermore,\nwe consider the relationship between the two graph equivariant cohomology rings\ninduced by odd- and even-dimensional complex quadrics.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant cohomology of odd-dimensional complex quadrics from a combinatorial point of view\",\"authors\":\"Shintaro Kuroki, Bidhan Paul\",\"doi\":\"arxiv-2407.17921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to determine the ring structure of the torus equivariant\\ncohomology of odd-dimensional complex quadrics by computing the graph\\nequivariant cohomology of their corresponding GKM graphs. We show that its\\ngraph equivariant cohomology is generated by three types of subgraphs in the\\nGKM graph, which are subject to four different types of relations. Furthermore,\\nwe consider the relationship between the two graph equivariant cohomology rings\\ninduced by odd- and even-dimensional complex quadrics.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在通过计算奇数维复四边形对应的 GKM 图的图变同调来确定其环状结构。我们证明其图等变同调由 GKM 图中的三种子图生成,这三种子图受四种不同类型的关系制约。此外,我们还考虑了奇数维和偶数维复四维图引起的两个图等变同调环之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivariant cohomology of odd-dimensional complex quadrics from a combinatorial point of view
This paper aims to determine the ring structure of the torus equivariant cohomology of odd-dimensional complex quadrics by computing the graph equivariant cohomology of their corresponding GKM graphs. We show that its graph equivariant cohomology is generated by three types of subgraphs in the GKM graph, which are subject to four different types of relations. Furthermore, we consider the relationship between the two graph equivariant cohomology rings induced by odd- and even-dimensional complex quadrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信