{"title":"电化学回收城市污水中的氮和磷","authors":"Panagiota D. Natsi, Petros G. Koutsoukos","doi":"10.3390/cryst14080675","DOIUrl":null,"url":null,"abstract":"Phosphorus, P, is a vital element of paramount importance for both humans and for the Environment. Wastewater contains often relatively high concentrations of P which can be recovered as crystalline struvite (MgNH4PO4·6H2O, MAP). This option is quite attractive in assisting sustainable development because struvite can be used as a slow-release fertilizer. Domestic wastewater is usually high in P and nitrogen, N, but relatively poor in magnesium, Mg. It is necessary to develop low-cost solutions for the enrichment of wastewater with Mg. In the present work, sacrificial magnesium anodes were used, which dissolve upon anodic polarization, releasing sufficient magnesium for the selective precipitation of MAP. The application of constant current between two electrodes of which the anode is a low-cost magnesium cylindrical rod (4 cm2 exposed surface area) and the other a platinum cathode electrode, both immersed in ammonium phosphate solutions, without adjustment of the solution pH, was investigated. Constant current density over the range 10–100 A·m−2, between the Mg- Pt electrodes immersed in solutions of ammonium hydrogen phosphate of exactly known initial concentration, was applied using a potentiostat. In the presence of sodium chloride solutions, on the magnesium anode and in the bulk solution, Mg(OH)2 (brucite) formed because of the passivation of the Mg electrode. In dilute ammonium hydrogen phosphate solutions, the magnesium anode dissolution resulted in struvite precipitation, even at a low applied current (10 mA). Struvite crystals with an average size of 20 μm were precipitated. The behavior of the cell for the electrolyte solutions used was Faradaic as long as the surface coverage of the anode was relatively low. The anodic dissolution of Mg resulted in high pH values (pH 11) eliminating the need for alkali addition.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Recovery of N and P from Municipal Wastewater\",\"authors\":\"Panagiota D. Natsi, Petros G. Koutsoukos\",\"doi\":\"10.3390/cryst14080675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphorus, P, is a vital element of paramount importance for both humans and for the Environment. Wastewater contains often relatively high concentrations of P which can be recovered as crystalline struvite (MgNH4PO4·6H2O, MAP). This option is quite attractive in assisting sustainable development because struvite can be used as a slow-release fertilizer. Domestic wastewater is usually high in P and nitrogen, N, but relatively poor in magnesium, Mg. It is necessary to develop low-cost solutions for the enrichment of wastewater with Mg. In the present work, sacrificial magnesium anodes were used, which dissolve upon anodic polarization, releasing sufficient magnesium for the selective precipitation of MAP. The application of constant current between two electrodes of which the anode is a low-cost magnesium cylindrical rod (4 cm2 exposed surface area) and the other a platinum cathode electrode, both immersed in ammonium phosphate solutions, without adjustment of the solution pH, was investigated. Constant current density over the range 10–100 A·m−2, between the Mg- Pt electrodes immersed in solutions of ammonium hydrogen phosphate of exactly known initial concentration, was applied using a potentiostat. In the presence of sodium chloride solutions, on the magnesium anode and in the bulk solution, Mg(OH)2 (brucite) formed because of the passivation of the Mg electrode. In dilute ammonium hydrogen phosphate solutions, the magnesium anode dissolution resulted in struvite precipitation, even at a low applied current (10 mA). Struvite crystals with an average size of 20 μm were precipitated. The behavior of the cell for the electrolyte solutions used was Faradaic as long as the surface coverage of the anode was relatively low. The anodic dissolution of Mg resulted in high pH values (pH 11) eliminating the need for alkali addition.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14080675\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14080675","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Electrochemical Recovery of N and P from Municipal Wastewater
Phosphorus, P, is a vital element of paramount importance for both humans and for the Environment. Wastewater contains often relatively high concentrations of P which can be recovered as crystalline struvite (MgNH4PO4·6H2O, MAP). This option is quite attractive in assisting sustainable development because struvite can be used as a slow-release fertilizer. Domestic wastewater is usually high in P and nitrogen, N, but relatively poor in magnesium, Mg. It is necessary to develop low-cost solutions for the enrichment of wastewater with Mg. In the present work, sacrificial magnesium anodes were used, which dissolve upon anodic polarization, releasing sufficient magnesium for the selective precipitation of MAP. The application of constant current between two electrodes of which the anode is a low-cost magnesium cylindrical rod (4 cm2 exposed surface area) and the other a platinum cathode electrode, both immersed in ammonium phosphate solutions, without adjustment of the solution pH, was investigated. Constant current density over the range 10–100 A·m−2, between the Mg- Pt electrodes immersed in solutions of ammonium hydrogen phosphate of exactly known initial concentration, was applied using a potentiostat. In the presence of sodium chloride solutions, on the magnesium anode and in the bulk solution, Mg(OH)2 (brucite) formed because of the passivation of the Mg electrode. In dilute ammonium hydrogen phosphate solutions, the magnesium anode dissolution resulted in struvite precipitation, even at a low applied current (10 mA). Struvite crystals with an average size of 20 μm were precipitated. The behavior of the cell for the electrolyte solutions used was Faradaic as long as the surface coverage of the anode was relatively low. The anodic dissolution of Mg resulted in high pH values (pH 11) eliminating the need for alkali addition.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.