Yunting Zhu, Tian Ye, Hailang Wen, Rongbin Xu, Yi Zhong, Guangyang Lin, Dongxue Liang, Weiwei Cai, Daquan Yu, Weiyi Lin
{"title":"金刚石纳米片中的准二维声子传输","authors":"Yunting Zhu, Tian Ye, Hailang Wen, Rongbin Xu, Yi Zhong, Guangyang Lin, Dongxue Liang, Weiwei Cai, Daquan Yu, Weiyi Lin","doi":"10.1002/adfm.202407333","DOIUrl":null,"url":null,"abstract":"<p>Nanomaterial phonon transport is crucial for miniaturized devices and superior thermophysical properties in condensed matter physics. Diamond nanosheets, applicable in nanoelectronics/optoelectronics, offer availability to explore dimensionality's impact on phonon transport. Raman spectroscopy is used to study the thermal conductivity (κ) of diamond nanosheets with a thickness below 100 nm. Results show a <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>∼</mo>\n <msup>\n <mi>T</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\kappa \\sim {{T}^{ - 1}}$</annotation>\n </semantics></math> law above 140 K, highlighting Umklapp phonon scattering. Despite the reduced thickness, κ (1100-2000 W/mK) remains higher than metals and most semiconductors, showcasing diamonds' remarkable in-plane heat transfer. Intriguingly, the research uncovers unique length-dependent behavior <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>∼</mo>\n <mi>log</mi>\n <mo>(</mo>\n <mi>L</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\kappa \\sim {\\mathrm{log}}( L )$</annotation>\n </semantics></math>, consistent with graphene, the two-dimensional (2D) allotrope. This research offers insights into thermal transport in quasi-2D nanosheets, with significant implications for nanoscale heat management and highly efficient thermal devices.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-2D Phonon Transport in Diamond Nanosheet\",\"authors\":\"Yunting Zhu, Tian Ye, Hailang Wen, Rongbin Xu, Yi Zhong, Guangyang Lin, Dongxue Liang, Weiwei Cai, Daquan Yu, Weiyi Lin\",\"doi\":\"10.1002/adfm.202407333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanomaterial phonon transport is crucial for miniaturized devices and superior thermophysical properties in condensed matter physics. Diamond nanosheets, applicable in nanoelectronics/optoelectronics, offer availability to explore dimensionality's impact on phonon transport. Raman spectroscopy is used to study the thermal conductivity (κ) of diamond nanosheets with a thickness below 100 nm. Results show a <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>κ</mi>\\n <mo>∼</mo>\\n <msup>\\n <mi>T</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\kappa \\\\sim {{T}^{ - 1}}$</annotation>\\n </semantics></math> law above 140 K, highlighting Umklapp phonon scattering. Despite the reduced thickness, κ (1100-2000 W/mK) remains higher than metals and most semiconductors, showcasing diamonds' remarkable in-plane heat transfer. Intriguingly, the research uncovers unique length-dependent behavior <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>κ</mi>\\n <mo>∼</mo>\\n <mi>log</mi>\\n <mo>(</mo>\\n <mi>L</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\kappa \\\\sim {\\\\mathrm{log}}( L )$</annotation>\\n </semantics></math>, consistent with graphene, the two-dimensional (2D) allotrope. This research offers insights into thermal transport in quasi-2D nanosheets, with significant implications for nanoscale heat management and highly efficient thermal devices.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202407333\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202407333","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在凝聚态物理学中,纳米材料的声子传输对于微型设备和优异的热物理性能至关重要。适用于纳米电子学/光电子学的金刚石纳米片可用于探索尺寸对声子传输的影响。拉曼光谱用于研究厚度低于 100 纳米的金刚石纳米片的热导率 (κ)。结果表明,在 140 K 以上有一个规律,突出显示了 Umklapp 声子散射。尽管厚度减小了,但κ(1100-2000 W/mK)仍然高于金属和大多数半导体,显示了金刚石卓越的面内传热性。有趣的是,这项研究发现了独特的长度依赖行为,与二维(2D)同素异形体石墨烯一致。这项研究深入揭示了准二维纳米片中的热传输,对纳米级热管理和高效热设备具有重要意义。
Nanomaterial phonon transport is crucial for miniaturized devices and superior thermophysical properties in condensed matter physics. Diamond nanosheets, applicable in nanoelectronics/optoelectronics, offer availability to explore dimensionality's impact on phonon transport. Raman spectroscopy is used to study the thermal conductivity (κ) of diamond nanosheets with a thickness below 100 nm. Results show a law above 140 K, highlighting Umklapp phonon scattering. Despite the reduced thickness, κ (1100-2000 W/mK) remains higher than metals and most semiconductors, showcasing diamonds' remarkable in-plane heat transfer. Intriguingly, the research uncovers unique length-dependent behavior , consistent with graphene, the two-dimensional (2D) allotrope. This research offers insights into thermal transport in quasi-2D nanosheets, with significant implications for nanoscale heat management and highly efficient thermal devices.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.