Mohd Ahtesham Hussain Siddiqui, Somnath Chattopadhyaya, Shubham Sharma, Changhe Li, Yanbin Zhang, Anita Gehlot, Abhinav Kumar, Fuad A. Awwad, M. Ijaz Khan, Emad A. A. Ismail
{"title":"地下煤矿未勘探地层结构的地下剖面识别:固有故障检测方法案例研究","authors":"Mohd Ahtesham Hussain Siddiqui, Somnath Chattopadhyaya, Shubham Sharma, Changhe Li, Yanbin Zhang, Anita Gehlot, Abhinav Kumar, Fuad A. Awwad, M. Ijaz Khan, Emad A. A. Ismail","doi":"10.1007/s42461-024-00992-6","DOIUrl":null,"url":null,"abstract":"<p>Safety in conjunction with production is a reality achieved in underground mining, where roof or side falls can have devastating effects on operations. A precise understanding of the roof structure is crucial for designing effective support systems that mitigate ground-fall risks. A key finding underscores the significance of this understanding. Sub Surface Profiler Ground-Penetrating Radar (SSPGPR) technology, utilizing real-time data and wirelessly transmitted signals, plays a pivotal role in achieving accurate knowledge of the roof structure. Geotechnical approaches, incorporating SSPGPR algorithms, facilitate continuous recording of sub-horizontal reflections through the lithology, optimizing roof support with accurate images of unexplored rock structures. The technology’s practical application in the Saoner group of underground mines highlights its effectiveness in mapping various zones within the roof rock strata, aiding excavation and support methods. SSPGPR is instrumental in detecting unmined strata profiles not evident in borehole data during exploration, emphasizing its transformative impact on efficiency and safety in underground mining. The correlation between fault zones mapped by SSP and ground faults further validates its effectiveness.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"17 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Underground Coal Mines Unexplored Strata Structure Identification with Subsurface Profiling: A Case Study of Inherent Fault-Detection Method\",\"authors\":\"Mohd Ahtesham Hussain Siddiqui, Somnath Chattopadhyaya, Shubham Sharma, Changhe Li, Yanbin Zhang, Anita Gehlot, Abhinav Kumar, Fuad A. Awwad, M. Ijaz Khan, Emad A. A. Ismail\",\"doi\":\"10.1007/s42461-024-00992-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Safety in conjunction with production is a reality achieved in underground mining, where roof or side falls can have devastating effects on operations. A precise understanding of the roof structure is crucial for designing effective support systems that mitigate ground-fall risks. A key finding underscores the significance of this understanding. Sub Surface Profiler Ground-Penetrating Radar (SSPGPR) technology, utilizing real-time data and wirelessly transmitted signals, plays a pivotal role in achieving accurate knowledge of the roof structure. Geotechnical approaches, incorporating SSPGPR algorithms, facilitate continuous recording of sub-horizontal reflections through the lithology, optimizing roof support with accurate images of unexplored rock structures. The technology’s practical application in the Saoner group of underground mines highlights its effectiveness in mapping various zones within the roof rock strata, aiding excavation and support methods. SSPGPR is instrumental in detecting unmined strata profiles not evident in borehole data during exploration, emphasizing its transformative impact on efficiency and safety in underground mining. The correlation between fault zones mapped by SSP and ground faults further validates its effectiveness.</p>\",\"PeriodicalId\":18588,\"journal\":{\"name\":\"Mining, Metallurgy & Exploration\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining, Metallurgy & Exploration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-00992-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-00992-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Underground Coal Mines Unexplored Strata Structure Identification with Subsurface Profiling: A Case Study of Inherent Fault-Detection Method
Safety in conjunction with production is a reality achieved in underground mining, where roof or side falls can have devastating effects on operations. A precise understanding of the roof structure is crucial for designing effective support systems that mitigate ground-fall risks. A key finding underscores the significance of this understanding. Sub Surface Profiler Ground-Penetrating Radar (SSPGPR) technology, utilizing real-time data and wirelessly transmitted signals, plays a pivotal role in achieving accurate knowledge of the roof structure. Geotechnical approaches, incorporating SSPGPR algorithms, facilitate continuous recording of sub-horizontal reflections through the lithology, optimizing roof support with accurate images of unexplored rock structures. The technology’s practical application in the Saoner group of underground mines highlights its effectiveness in mapping various zones within the roof rock strata, aiding excavation and support methods. SSPGPR is instrumental in detecting unmined strata profiles not evident in borehole data during exploration, emphasizing its transformative impact on efficiency and safety in underground mining. The correlation between fault zones mapped by SSP and ground faults further validates its effectiveness.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.