通过改进遗传 XG 提升算法技术,利用未来数据集同时预测平均碎片尺寸和峰值粒子速度的创新方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
N. Sri Chandrahas, Bhanwar Singh Choudhary, M. S. Venkataramayya, Fissha Yewuhalashet
{"title":"通过改进遗传 XG 提升算法技术,利用未来数据集同时预测平均碎片尺寸和峰值粒子速度的创新方法","authors":"N. Sri Chandrahas, Bhanwar Singh Choudhary, M. S. Venkataramayya, Fissha Yewuhalashet","doi":"10.1007/s42461-024-01045-8","DOIUrl":null,"url":null,"abstract":"<p>In the current study, two algorithms, custom XG Boost (CXGBA) and improved genetic XG Boost algorithm (IGXGBA), have been chosen to create an empirical formula for the simultaneous prediction of the mean fragmentation size (MFS) and the peak particle velocity (PPV) with sourced datasets of geo-blast parameters such as spacing burden ratio (S/B), stemming length (T), decking length (DL), firing pattern (FP), total quantity of explosive (TE), maximum charge per delay (MCD), measuring distance (MD), joint angle (JA), joint spanning height (JSP), joint set number (Jn), and rock compressive strength. Advanced technical combinations like K-10 cross-validation, and grid search executed along genetic algorithm processes with a high mutation rate to XGBoost algorithm. All algorithms were executed using Python programming in the Google Colab platform. The results unveiled that IGXGBA is superior and effective in-terms of metric <i>R</i><sup>2</sup>, RMSE, and MAPE in predicting MFS and PPV. A WEB APP called Bhanwar Blasting Formula (BBF) was created utilizing Google Cloud Platform (GCP) and FLASK APP to benefit practicing mining engineers to predict blasting results easily from the site itself and identify optimization.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Inventive Approach for Simultaneous Prediction of Mean Fragmentation Size and Peak Particle Velocity Using Futuristic Datasets Through Improved Techniques of Genetic XG Boost Algorithm\",\"authors\":\"N. Sri Chandrahas, Bhanwar Singh Choudhary, M. S. Venkataramayya, Fissha Yewuhalashet\",\"doi\":\"10.1007/s42461-024-01045-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the current study, two algorithms, custom XG Boost (CXGBA) and improved genetic XG Boost algorithm (IGXGBA), have been chosen to create an empirical formula for the simultaneous prediction of the mean fragmentation size (MFS) and the peak particle velocity (PPV) with sourced datasets of geo-blast parameters such as spacing burden ratio (S/B), stemming length (T), decking length (DL), firing pattern (FP), total quantity of explosive (TE), maximum charge per delay (MCD), measuring distance (MD), joint angle (JA), joint spanning height (JSP), joint set number (Jn), and rock compressive strength. Advanced technical combinations like K-10 cross-validation, and grid search executed along genetic algorithm processes with a high mutation rate to XGBoost algorithm. All algorithms were executed using Python programming in the Google Colab platform. The results unveiled that IGXGBA is superior and effective in-terms of metric <i>R</i><sup>2</sup>, RMSE, and MAPE in predicting MFS and PPV. A WEB APP called Bhanwar Blasting Formula (BBF) was created utilizing Google Cloud Platform (GCP) and FLASK APP to benefit practicing mining engineers to predict blasting results easily from the site itself and identify optimization.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-01045-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01045-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在目前的研究中,我们选择了两种算法,即定制 XG Boost 算法(CXGBA)和改进遗传 XG Boost 算法(IGXGBA),来创建一个经验公式,用于同时预测平均破片尺寸(MFS)和峰值粒子速度(PPV),这些数据集来源于土工爆破参数,如间距负担比(S/B)、发射模式 (FP)、炸药总量 (TE)、每次延时最大装药量 (MCD)、测量距离 (MD)、接合角 (JA)、接合跨高 (JSP)、接合套数 (Jn) 和岩石抗压强度。先进的技术组合,如 K-10 交叉验证和网格搜索,与高突变率的 XGBoost 算法一起执行遗传算法过程。所有算法均在谷歌 Colab 平台上使用 Python 编程执行。结果表明,在预测 MFS 和 PPV 方面,IGXGBA 在指标 R2、RMSE 和 MAPE 方面更优越、更有效。利用谷歌云平台(GCP)和 FLASK APP 创建了名为 Bhanwar 爆破公式(BBF)的 WEB APP,使采矿工程师能够从现场轻松预测爆破结果并确定优化方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Inventive Approach for Simultaneous Prediction of Mean Fragmentation Size and Peak Particle Velocity Using Futuristic Datasets Through Improved Techniques of Genetic XG Boost Algorithm

An Inventive Approach for Simultaneous Prediction of Mean Fragmentation Size and Peak Particle Velocity Using Futuristic Datasets Through Improved Techniques of Genetic XG Boost Algorithm

In the current study, two algorithms, custom XG Boost (CXGBA) and improved genetic XG Boost algorithm (IGXGBA), have been chosen to create an empirical formula for the simultaneous prediction of the mean fragmentation size (MFS) and the peak particle velocity (PPV) with sourced datasets of geo-blast parameters such as spacing burden ratio (S/B), stemming length (T), decking length (DL), firing pattern (FP), total quantity of explosive (TE), maximum charge per delay (MCD), measuring distance (MD), joint angle (JA), joint spanning height (JSP), joint set number (Jn), and rock compressive strength. Advanced technical combinations like K-10 cross-validation, and grid search executed along genetic algorithm processes with a high mutation rate to XGBoost algorithm. All algorithms were executed using Python programming in the Google Colab platform. The results unveiled that IGXGBA is superior and effective in-terms of metric R2, RMSE, and MAPE in predicting MFS and PPV. A WEB APP called Bhanwar Blasting Formula (BBF) was created utilizing Google Cloud Platform (GCP) and FLASK APP to benefit practicing mining engineers to predict blasting results easily from the site itself and identify optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信