{"title":"使用反事实推理的因果生成解释器:Morpho-MNIST 数据集案例研究","authors":"Will Taylor-Melanson, Zahra Sadeghi, Stan Matwin","doi":"10.1007/s10044-024-01306-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose leveraging causal generative learning as an interpretable tool for explaining image classifiers. Specifically, we present a generative counterfactual inference approach to study the influence of visual features (pixels) as well as causal factors through generative learning. To this end, we first uncover the most influential pixels on a classifier’s decision by computing both Shapely and contrastive explanations for counterfactual images with different attribute values. We then establish a Monte Carlo mechanism using the generator of a causal generative model in order to adapt Shapley explainers to produce feature importances for the human-interpretable attributes of a causal dataset. This method is applied to the case where a classifier has been trained exclusively on the images of the causal dataset. Finally, we present optimization methods for creating counterfactual explanations of classifiers by means of counterfactual inference, proposing straightforward approaches for both differentiable and arbitrary classifiers. We exploit the Morpho-MNIST causal dataset as a case study for exploring our proposed methods for generating counterfactual explanations. However, our methods are applicable also to other causal datasets containing image data. We employ visual explanation methods from the OmnixAI open source toolkit to compare them with our proposed methods. By employing quantitative metrics to measure the interpretability of counterfactual explanations, we find that our proposed methods of counterfactual explanation offer more interpretable explanations compared to those generated from OmnixAI. This finding suggests that our methods are well-suited for generating highly interpretable counterfactual explanations on causal datasets.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"21 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal generative explainers using counterfactual inference: a case study on the Morpho-MNIST dataset\",\"authors\":\"Will Taylor-Melanson, Zahra Sadeghi, Stan Matwin\",\"doi\":\"10.1007/s10044-024-01306-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose leveraging causal generative learning as an interpretable tool for explaining image classifiers. Specifically, we present a generative counterfactual inference approach to study the influence of visual features (pixels) as well as causal factors through generative learning. To this end, we first uncover the most influential pixels on a classifier’s decision by computing both Shapely and contrastive explanations for counterfactual images with different attribute values. We then establish a Monte Carlo mechanism using the generator of a causal generative model in order to adapt Shapley explainers to produce feature importances for the human-interpretable attributes of a causal dataset. This method is applied to the case where a classifier has been trained exclusively on the images of the causal dataset. Finally, we present optimization methods for creating counterfactual explanations of classifiers by means of counterfactual inference, proposing straightforward approaches for both differentiable and arbitrary classifiers. We exploit the Morpho-MNIST causal dataset as a case study for exploring our proposed methods for generating counterfactual explanations. However, our methods are applicable also to other causal datasets containing image data. We employ visual explanation methods from the OmnixAI open source toolkit to compare them with our proposed methods. By employing quantitative metrics to measure the interpretability of counterfactual explanations, we find that our proposed methods of counterfactual explanation offer more interpretable explanations compared to those generated from OmnixAI. This finding suggests that our methods are well-suited for generating highly interpretable counterfactual explanations on causal datasets.</p>\",\"PeriodicalId\":54639,\"journal\":{\"name\":\"Pattern Analysis and Applications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Analysis and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10044-024-01306-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01306-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Causal generative explainers using counterfactual inference: a case study on the Morpho-MNIST dataset
In this paper, we propose leveraging causal generative learning as an interpretable tool for explaining image classifiers. Specifically, we present a generative counterfactual inference approach to study the influence of visual features (pixels) as well as causal factors through generative learning. To this end, we first uncover the most influential pixels on a classifier’s decision by computing both Shapely and contrastive explanations for counterfactual images with different attribute values. We then establish a Monte Carlo mechanism using the generator of a causal generative model in order to adapt Shapley explainers to produce feature importances for the human-interpretable attributes of a causal dataset. This method is applied to the case where a classifier has been trained exclusively on the images of the causal dataset. Finally, we present optimization methods for creating counterfactual explanations of classifiers by means of counterfactual inference, proposing straightforward approaches for both differentiable and arbitrary classifiers. We exploit the Morpho-MNIST causal dataset as a case study for exploring our proposed methods for generating counterfactual explanations. However, our methods are applicable also to other causal datasets containing image data. We employ visual explanation methods from the OmnixAI open source toolkit to compare them with our proposed methods. By employing quantitative metrics to measure the interpretability of counterfactual explanations, we find that our proposed methods of counterfactual explanation offer more interpretable explanations compared to those generated from OmnixAI. This finding suggests that our methods are well-suited for generating highly interpretable counterfactual explanations on causal datasets.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.