{"title":"与θ级数相关的一般系数消失结果","authors":"Shane Chern , Dazhao Tang","doi":"10.1016/j.aam.2024.102742","DOIUrl":null,"url":null,"abstract":"<div><p>There are a number of sporadic coefficient-vanishing results associated with theta series, which suggest certain underlying patterns. By expanding theta powers as linear combinations of products of theta functions, we present two strategies that will provide a unified treatment. Our approaches rely on studying the behavior of products of two theta series under the action of the huffing operator. For this purpose, some explicit criteria are given. We may use the presented methods to not only verify experimentally discovered coefficient-vanishing results, but also to produce a series of general phenomena.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General coefficient-vanishing results associated with theta series\",\"authors\":\"Shane Chern , Dazhao Tang\",\"doi\":\"10.1016/j.aam.2024.102742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There are a number of sporadic coefficient-vanishing results associated with theta series, which suggest certain underlying patterns. By expanding theta powers as linear combinations of products of theta functions, we present two strategies that will provide a unified treatment. Our approaches rely on studying the behavior of products of two theta series under the action of the huffing operator. For this purpose, some explicit criteria are given. We may use the presented methods to not only verify experimentally discovered coefficient-vanishing results, but also to produce a series of general phenomena.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000745\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000745","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
General coefficient-vanishing results associated with theta series
There are a number of sporadic coefficient-vanishing results associated with theta series, which suggest certain underlying patterns. By expanding theta powers as linear combinations of products of theta functions, we present two strategies that will provide a unified treatment. Our approaches rely on studying the behavior of products of two theta series under the action of the huffing operator. For this purpose, some explicit criteria are given. We may use the presented methods to not only verify experimentally discovered coefficient-vanishing results, but also to produce a series of general phenomena.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.