{"title":"基于稀土氧化物和多孔砷化镓的 MOS 电容器的形态、光学和电学特性","authors":"Hayet Saghrouni, Lotfi Beji","doi":"10.1007/s11664-024-11309-0","DOIUrl":null,"url":null,"abstract":"<p>This paper reports the structural, optical, and electrical properties of dysprosium oxide (Dy<sub>2</sub>O<sub>3</sub>) deposited by electron beam deposition under ultra-vacuum on porous <i>p</i>-type GaAs. A porous GaAs layer was produced by electrochemical anodic etching of a (100)-heavily doped <i>p</i>-type GaAs substrate in hydrofluoric acid (HF) and ethanol C<sub>2</sub>H<sub>5</sub>OH solution. The surface topography of the elaborated Dy<sub>2</sub>O<sub>3</sub> layer was determined based on atomic force microscopy (AFM) images. AFM studies showed that the structure and roughness of the Dy<sub>2</sub>O<sub>3</sub> layer were strongly dependent on the roughness and surface of porous GaAs. Dy<sub>2</sub>O<sub>3</sub> is polycrystalline and exhibits a cubic crystalline structure, as confirmed by x-ray diffraction (XRD) analysis. The optical properties of Dy<sub>2</sub>O<sub>3</sub>/p-porous GaAs were analyzed using various techniques including ellipsometry and photoluminescence (PL) to obtain information on surface and interface quality, bandgap, optical constants, dielectric constant, and thickness. The photoluminescence (PL) spectra revealed an intense peak at 835 nm and additional weak emission peaks at 473 nm and 540 nm, respectively. The observed intense peak can be directly attributed to the interband recombination process of free carriers in the direct bandgap of p-GaAs, while the weak emission peaks at 473 nm and 540 nm correspond to 4F9/2-6H15/2 and 4F9/2-6H13/2 transitions, respectively. In the spectral region of 350 nm to 500 nm, the average thickness of the Dy<sub>2</sub>O<sub>3</sub> layer was determined to be 11 nm. The electrical properties of the (Co/Au)/Dy<sub>2</sub>O<sub>3</sub>/p-porous GaAs metal–oxide–semiconductor (MOS) capacitor were investigated via capacitance–voltage (C–V) and conductance–voltage (G/ω–V) measurements in the temperature range of 100–400 K and frequency range of 50 Hz to 1 MHz, respectively. The experiments demonstrated that both capacitance and conductance were influenced by temperature and frequency. Additionally, the effect of temperature on interface state density (<i>N</i><sub>ss</sub>) was studied, which showed that an increase in temperature led to a decrease in the interface state density (<i>N</i><sub>ss</sub>) of the (Co/Au)/Dy<sub>2</sub>O<sub>3</sub>/p-porous GaAs (MOS) capacitor, as calculated by the Hill–Coleman method. The mean values of <i>N</i><sub>ss</sub> for the (Co/Au)/Dy<sub>2</sub>O<sub>3</sub>/p-porous GaAs (MOS) capacitor were determined to be approximately 10<sup>12</sup> eV<sup>−1</sup> cm<sup>−2</sup>, making it suitable for electronic device applications. The lower values of <i>N</i><sub>ss</sub> can be attributed to a low amount of local defect microstructure at the Dy<sub>2</sub>O<sub>3</sub>/p-porous GaAs interface due to the incorporation of the Dy<sub>2</sub>O<sub>3</sub> layer into the porous GaAs. The electrical conductivity of the (Co/Au)/Dy<sub>2</sub>O<sub>3</sub>/p-porous GaAs (MOS) capacitor was studied using impedance spectroscopy in the frequency range from 50 Hz to 1 MHz at temperatures ranging from 80 K to 450 K. At low frequencies, the conductivity of alternating current (<i>σ</i><sub>AC</sub>) remained nearly constant, whereas at high frequencies, it increased rapidly, representing <i>σ</i><sub>DC</sub> and <i>σ</i><sub>AC</sub>, respectively. The Arrhenius plot of <i>σ</i><sub>AC</sub> shows two distinct slopes corresponding to two activation energies, 35 MeV and 10 MeV, in the chosen temperature range.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"14 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological, Optical, and Electrical Properties of a MOS Capacitor Based on Rare Earth Oxide and p-Porous GaAs\",\"authors\":\"Hayet Saghrouni, Lotfi Beji\",\"doi\":\"10.1007/s11664-024-11309-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper reports the structural, optical, and electrical properties of dysprosium oxide (Dy<sub>2</sub>O<sub>3</sub>) deposited by electron beam deposition under ultra-vacuum on porous <i>p</i>-type GaAs. A porous GaAs layer was produced by electrochemical anodic etching of a (100)-heavily doped <i>p</i>-type GaAs substrate in hydrofluoric acid (HF) and ethanol C<sub>2</sub>H<sub>5</sub>OH solution. The surface topography of the elaborated Dy<sub>2</sub>O<sub>3</sub> layer was determined based on atomic force microscopy (AFM) images. AFM studies showed that the structure and roughness of the Dy<sub>2</sub>O<sub>3</sub> layer were strongly dependent on the roughness and surface of porous GaAs. Dy<sub>2</sub>O<sub>3</sub> is polycrystalline and exhibits a cubic crystalline structure, as confirmed by x-ray diffraction (XRD) analysis. The optical properties of Dy<sub>2</sub>O<sub>3</sub>/p-porous GaAs were analyzed using various techniques including ellipsometry and photoluminescence (PL) to obtain information on surface and interface quality, bandgap, optical constants, dielectric constant, and thickness. The photoluminescence (PL) spectra revealed an intense peak at 835 nm and additional weak emission peaks at 473 nm and 540 nm, respectively. The observed intense peak can be directly attributed to the interband recombination process of free carriers in the direct bandgap of p-GaAs, while the weak emission peaks at 473 nm and 540 nm correspond to 4F9/2-6H15/2 and 4F9/2-6H13/2 transitions, respectively. In the spectral region of 350 nm to 500 nm, the average thickness of the Dy<sub>2</sub>O<sub>3</sub> layer was determined to be 11 nm. The electrical properties of the (Co/Au)/Dy<sub>2</sub>O<sub>3</sub>/p-porous GaAs metal–oxide–semiconductor (MOS) capacitor were investigated via capacitance–voltage (C–V) and conductance–voltage (G/ω–V) measurements in the temperature range of 100–400 K and frequency range of 50 Hz to 1 MHz, respectively. The experiments demonstrated that both capacitance and conductance were influenced by temperature and frequency. Additionally, the effect of temperature on interface state density (<i>N</i><sub>ss</sub>) was studied, which showed that an increase in temperature led to a decrease in the interface state density (<i>N</i><sub>ss</sub>) of the (Co/Au)/Dy<sub>2</sub>O<sub>3</sub>/p-porous GaAs (MOS) capacitor, as calculated by the Hill–Coleman method. The mean values of <i>N</i><sub>ss</sub> for the (Co/Au)/Dy<sub>2</sub>O<sub>3</sub>/p-porous GaAs (MOS) capacitor were determined to be approximately 10<sup>12</sup> eV<sup>−1</sup> cm<sup>−2</sup>, making it suitable for electronic device applications. The lower values of <i>N</i><sub>ss</sub> can be attributed to a low amount of local defect microstructure at the Dy<sub>2</sub>O<sub>3</sub>/p-porous GaAs interface due to the incorporation of the Dy<sub>2</sub>O<sub>3</sub> layer into the porous GaAs. The electrical conductivity of the (Co/Au)/Dy<sub>2</sub>O<sub>3</sub>/p-porous GaAs (MOS) capacitor was studied using impedance spectroscopy in the frequency range from 50 Hz to 1 MHz at temperatures ranging from 80 K to 450 K. At low frequencies, the conductivity of alternating current (<i>σ</i><sub>AC</sub>) remained nearly constant, whereas at high frequencies, it increased rapidly, representing <i>σ</i><sub>DC</sub> and <i>σ</i><sub>AC</sub>, respectively. The Arrhenius plot of <i>σ</i><sub>AC</sub> shows two distinct slopes corresponding to two activation energies, 35 MeV and 10 MeV, in the chosen temperature range.</p>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11664-024-11309-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11309-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Morphological, Optical, and Electrical Properties of a MOS Capacitor Based on Rare Earth Oxide and p-Porous GaAs
This paper reports the structural, optical, and electrical properties of dysprosium oxide (Dy2O3) deposited by electron beam deposition under ultra-vacuum on porous p-type GaAs. A porous GaAs layer was produced by electrochemical anodic etching of a (100)-heavily doped p-type GaAs substrate in hydrofluoric acid (HF) and ethanol C2H5OH solution. The surface topography of the elaborated Dy2O3 layer was determined based on atomic force microscopy (AFM) images. AFM studies showed that the structure and roughness of the Dy2O3 layer were strongly dependent on the roughness and surface of porous GaAs. Dy2O3 is polycrystalline and exhibits a cubic crystalline structure, as confirmed by x-ray diffraction (XRD) analysis. The optical properties of Dy2O3/p-porous GaAs were analyzed using various techniques including ellipsometry and photoluminescence (PL) to obtain information on surface and interface quality, bandgap, optical constants, dielectric constant, and thickness. The photoluminescence (PL) spectra revealed an intense peak at 835 nm and additional weak emission peaks at 473 nm and 540 nm, respectively. The observed intense peak can be directly attributed to the interband recombination process of free carriers in the direct bandgap of p-GaAs, while the weak emission peaks at 473 nm and 540 nm correspond to 4F9/2-6H15/2 and 4F9/2-6H13/2 transitions, respectively. In the spectral region of 350 nm to 500 nm, the average thickness of the Dy2O3 layer was determined to be 11 nm. The electrical properties of the (Co/Au)/Dy2O3/p-porous GaAs metal–oxide–semiconductor (MOS) capacitor were investigated via capacitance–voltage (C–V) and conductance–voltage (G/ω–V) measurements in the temperature range of 100–400 K and frequency range of 50 Hz to 1 MHz, respectively. The experiments demonstrated that both capacitance and conductance were influenced by temperature and frequency. Additionally, the effect of temperature on interface state density (Nss) was studied, which showed that an increase in temperature led to a decrease in the interface state density (Nss) of the (Co/Au)/Dy2O3/p-porous GaAs (MOS) capacitor, as calculated by the Hill–Coleman method. The mean values of Nss for the (Co/Au)/Dy2O3/p-porous GaAs (MOS) capacitor were determined to be approximately 1012 eV−1 cm−2, making it suitable for electronic device applications. The lower values of Nss can be attributed to a low amount of local defect microstructure at the Dy2O3/p-porous GaAs interface due to the incorporation of the Dy2O3 layer into the porous GaAs. The electrical conductivity of the (Co/Au)/Dy2O3/p-porous GaAs (MOS) capacitor was studied using impedance spectroscopy in the frequency range from 50 Hz to 1 MHz at temperatures ranging from 80 K to 450 K. At low frequencies, the conductivity of alternating current (σAC) remained nearly constant, whereas at high frequencies, it increased rapidly, representing σDC and σAC, respectively. The Arrhenius plot of σAC shows two distinct slopes corresponding to two activation energies, 35 MeV and 10 MeV, in the chosen temperature range.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.