{"title":"用线性采样法识别受限傅里叶积分算子的形状和参数","authors":"Lorenzo Audibert and Shixu Meng","doi":"10.1088/1361-6420/ad5e18","DOIUrl":null,"url":null,"abstract":"In this paper we provide a new linear sampling method based on the same data but a different definition of the data operator for two inverse problems: the multi-frequency inverse source problem for a fixed observation direction and the Born inverse scattering problems. We show that the associated regularized linear sampling indicator converges to the average of the unknown in a small neighborhood as the regularization parameter approaches to zero. We develop both a shape identification theory and a parameter identification theory which are stimulated, analyzed, and implemented with the help of the prolate spheroidal wave functions and their generalizations. We further propose a prolate-based implementation of the linear sampling method and provide numerical experiments to demonstrate how this linear sampling method is capable of reconstructing both the shape and the parameter.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"18 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape and parameter identification by the linear sampling method for a restricted Fourier integral operator\",\"authors\":\"Lorenzo Audibert and Shixu Meng\",\"doi\":\"10.1088/1361-6420/ad5e18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide a new linear sampling method based on the same data but a different definition of the data operator for two inverse problems: the multi-frequency inverse source problem for a fixed observation direction and the Born inverse scattering problems. We show that the associated regularized linear sampling indicator converges to the average of the unknown in a small neighborhood as the regularization parameter approaches to zero. We develop both a shape identification theory and a parameter identification theory which are stimulated, analyzed, and implemented with the help of the prolate spheroidal wave functions and their generalizations. We further propose a prolate-based implementation of the linear sampling method and provide numerical experiments to demonstrate how this linear sampling method is capable of reconstructing both the shape and the parameter.\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad5e18\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad5e18","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Shape and parameter identification by the linear sampling method for a restricted Fourier integral operator
In this paper we provide a new linear sampling method based on the same data but a different definition of the data operator for two inverse problems: the multi-frequency inverse source problem for a fixed observation direction and the Born inverse scattering problems. We show that the associated regularized linear sampling indicator converges to the average of the unknown in a small neighborhood as the regularization parameter approaches to zero. We develop both a shape identification theory and a parameter identification theory which are stimulated, analyzed, and implemented with the help of the prolate spheroidal wave functions and their generalizations. We further propose a prolate-based implementation of the linear sampling method and provide numerical experiments to demonstrate how this linear sampling method is capable of reconstructing both the shape and the parameter.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.