{"title":"用于信息和通信技术应用的多相自然对流散热器","authors":"F. J. Lesage, M. Aladji, R. Eugenie","doi":"10.1134/S0040601524700149","DOIUrl":null,"url":null,"abstract":"<p>The requirement for heat sinks to better reject excess thermal energy is ever increasing due to the recent improvements in output power capacity in the Information and Communications Technology (ICT) industry. Current ICT thermal management strategies rely on single phase heat transfer techniques which have attained their upper limit. The present work aims to demonstrate that two-phase thermal system strategies can decrease heat sink size. A comparison of the heat dissipation capacity of a natural convection heat sink with and without the thermal transport mechanism of vaporization are measured and discussed. A discussion relating to the mathematical analysis of the heat transfer mechanisms leads to quantified results showing the efficiency gains of a two phase micro-porous heat sink. It is shown that the presence of evaporation from the holes on the front surface of the radiator makes it possible to reduce its size by 37.6% compared to a radiator in which heat removal is carried out only by natural convection.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 7","pages":"608 - 616"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiphase Natural Convection Heat Sink for Information and Communications Technology Applications\",\"authors\":\"F. J. Lesage, M. Aladji, R. Eugenie\",\"doi\":\"10.1134/S0040601524700149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The requirement for heat sinks to better reject excess thermal energy is ever increasing due to the recent improvements in output power capacity in the Information and Communications Technology (ICT) industry. Current ICT thermal management strategies rely on single phase heat transfer techniques which have attained their upper limit. The present work aims to demonstrate that two-phase thermal system strategies can decrease heat sink size. A comparison of the heat dissipation capacity of a natural convection heat sink with and without the thermal transport mechanism of vaporization are measured and discussed. A discussion relating to the mathematical analysis of the heat transfer mechanisms leads to quantified results showing the efficiency gains of a two phase micro-porous heat sink. It is shown that the presence of evaporation from the holes on the front surface of the radiator makes it possible to reduce its size by 37.6% compared to a radiator in which heat removal is carried out only by natural convection.</p>\",\"PeriodicalId\":799,\"journal\":{\"name\":\"Thermal Engineering\",\"volume\":\"71 7\",\"pages\":\"608 - 616\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040601524700149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601524700149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Multiphase Natural Convection Heat Sink for Information and Communications Technology Applications
The requirement for heat sinks to better reject excess thermal energy is ever increasing due to the recent improvements in output power capacity in the Information and Communications Technology (ICT) industry. Current ICT thermal management strategies rely on single phase heat transfer techniques which have attained their upper limit. The present work aims to demonstrate that two-phase thermal system strategies can decrease heat sink size. A comparison of the heat dissipation capacity of a natural convection heat sink with and without the thermal transport mechanism of vaporization are measured and discussed. A discussion relating to the mathematical analysis of the heat transfer mechanisms leads to quantified results showing the efficiency gains of a two phase micro-porous heat sink. It is shown that the presence of evaporation from the holes on the front surface of the radiator makes it possible to reduce its size by 37.6% compared to a radiator in which heat removal is carried out only by natural convection.