{"title":"煤电对全球二氧化碳排放的贡献:现状与减排趋势","authors":"A. N. Tugov","doi":"10.1134/S0040601524700125","DOIUrl":null,"url":null,"abstract":"<p>CO<sub>2</sub> emissions into the atmosphere in the electricity sector in 2022 exceeded 12.4 billion t, which is 1.8 times more than in 2000. The reasons for this growth are analyzed. It is noted that a significant contribution to these emissions (75%) is made by electricity generation using coal as fuel. It has been shown that it cannot be expected that CO<sub>2</sub> emissions will decrease in the near future as a result of the reduction in coal capacity; there is a steady increase in the world. In the 21st century, the total capacity of coal-fired thermal power plants increased approximately 1.9 times. Alternative ways to reduce greenhouse gas emissions are being considered, primarily through the construction of new, highly efficient power units with increased steam parameters and the decommissioning of obsolete equipment. Thanks to this, the structure of coal generation in the world is changing significantly: Thermal power plants with power units for super-supercritical (SSCP) steam parameters and supercritical pressure (SCP) already account for more than 47% of the total capacity of coal-fired thermal power plants. Such changes contributed to a reduction in specific greenhouse gas emissions from 466 g CO<sub>2</sub>/(kW h) in 2000 to 436 g CO<sub>2</sub>/(kW h) in 2022. In the Russian electricity sector, CO<sub>2</sub> emissions in 2022 amounted to approximately 410 million t. Since 2000, they have grown by only 22%. The share of CO<sub>2</sub> emissions from coal thermal power plants in Russia are estimated at 35–45% of the total amount of greenhouse gases associated with electricity production and does not exceed 0.5% of the global total due to the use of fossil fuels. Due to the low contribution of CO<sub>2</sub> emissions by Russian coal-fired thermal power plants, reducing greenhouse gas emissions from coal-fired power generation is not so relevant in the global problem and are solved mainly by replacing coal with natural gas. The need to introduce highly efficient but expensive equipment (for example, SSCP power units) at coal-fired thermal power plants to reduce emissions greenhouse gases is not as obvious as abroad, and its implementation requires a detailed feasibility study.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 7","pages":"547 - 559"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contribution of Coal Electricity to Global CO2 Emissions: The Existing Situation and Current Trends of Their Reduction\",\"authors\":\"A. N. Tugov\",\"doi\":\"10.1134/S0040601524700125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>CO<sub>2</sub> emissions into the atmosphere in the electricity sector in 2022 exceeded 12.4 billion t, which is 1.8 times more than in 2000. The reasons for this growth are analyzed. It is noted that a significant contribution to these emissions (75%) is made by electricity generation using coal as fuel. It has been shown that it cannot be expected that CO<sub>2</sub> emissions will decrease in the near future as a result of the reduction in coal capacity; there is a steady increase in the world. In the 21st century, the total capacity of coal-fired thermal power plants increased approximately 1.9 times. Alternative ways to reduce greenhouse gas emissions are being considered, primarily through the construction of new, highly efficient power units with increased steam parameters and the decommissioning of obsolete equipment. Thanks to this, the structure of coal generation in the world is changing significantly: Thermal power plants with power units for super-supercritical (SSCP) steam parameters and supercritical pressure (SCP) already account for more than 47% of the total capacity of coal-fired thermal power plants. Such changes contributed to a reduction in specific greenhouse gas emissions from 466 g CO<sub>2</sub>/(kW h) in 2000 to 436 g CO<sub>2</sub>/(kW h) in 2022. In the Russian electricity sector, CO<sub>2</sub> emissions in 2022 amounted to approximately 410 million t. Since 2000, they have grown by only 22%. The share of CO<sub>2</sub> emissions from coal thermal power plants in Russia are estimated at 35–45% of the total amount of greenhouse gases associated with electricity production and does not exceed 0.5% of the global total due to the use of fossil fuels. Due to the low contribution of CO<sub>2</sub> emissions by Russian coal-fired thermal power plants, reducing greenhouse gas emissions from coal-fired power generation is not so relevant in the global problem and are solved mainly by replacing coal with natural gas. The need to introduce highly efficient but expensive equipment (for example, SSCP power units) at coal-fired thermal power plants to reduce emissions greenhouse gases is not as obvious as abroad, and its implementation requires a detailed feasibility study.</p>\",\"PeriodicalId\":799,\"journal\":{\"name\":\"Thermal Engineering\",\"volume\":\"71 7\",\"pages\":\"547 - 559\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040601524700125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601524700125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Contribution of Coal Electricity to Global CO2 Emissions: The Existing Situation and Current Trends of Their Reduction
CO2 emissions into the atmosphere in the electricity sector in 2022 exceeded 12.4 billion t, which is 1.8 times more than in 2000. The reasons for this growth are analyzed. It is noted that a significant contribution to these emissions (75%) is made by electricity generation using coal as fuel. It has been shown that it cannot be expected that CO2 emissions will decrease in the near future as a result of the reduction in coal capacity; there is a steady increase in the world. In the 21st century, the total capacity of coal-fired thermal power plants increased approximately 1.9 times. Alternative ways to reduce greenhouse gas emissions are being considered, primarily through the construction of new, highly efficient power units with increased steam parameters and the decommissioning of obsolete equipment. Thanks to this, the structure of coal generation in the world is changing significantly: Thermal power plants with power units for super-supercritical (SSCP) steam parameters and supercritical pressure (SCP) already account for more than 47% of the total capacity of coal-fired thermal power plants. Such changes contributed to a reduction in specific greenhouse gas emissions from 466 g CO2/(kW h) in 2000 to 436 g CO2/(kW h) in 2022. In the Russian electricity sector, CO2 emissions in 2022 amounted to approximately 410 million t. Since 2000, they have grown by only 22%. The share of CO2 emissions from coal thermal power plants in Russia are estimated at 35–45% of the total amount of greenhouse gases associated with electricity production and does not exceed 0.5% of the global total due to the use of fossil fuels. Due to the low contribution of CO2 emissions by Russian coal-fired thermal power plants, reducing greenhouse gas emissions from coal-fired power generation is not so relevant in the global problem and are solved mainly by replacing coal with natural gas. The need to introduce highly efficient but expensive equipment (for example, SSCP power units) at coal-fired thermal power plants to reduce emissions greenhouse gases is not as obvious as abroad, and its implementation requires a detailed feasibility study.