Soyeon Ko, UnJin Ryu, Ho Yeon Yoo, Jeeyoung Shin, Kyung Min Choi, Dong Gyu Park, Won Ho Choi
{"title":"利用离散金属有机多面体组装的同质微孔薄膜","authors":"Soyeon Ko, UnJin Ryu, Ho Yeon Yoo, Jeeyoung Shin, Kyung Min Choi, Dong Gyu Park, Won Ho Choi","doi":"10.1002/eem2.12805","DOIUrl":null,"url":null,"abstract":"Homogeneous films with tailored microporous structures are crucial for several applications; however, fabricating such films presents significant challenges. This is primarily because most microporous materials have crystal sizes in the nano- and micrometer ranges, which inevitably generates intergranular spaces in the films, thereby complicating the fabrication of these thin films. In this study, functionalized metal–organic polyhedra (MOPs) are used as discrete microporous units and assembled into homogenous microporous films. The generation of intergranular spaces is avoided while controlling packing parameters and film thicknesses. Initially, the MOP units, influenced by van der Waals forces between carbon chains of functionalized adipic acids, display an affinity to form spindle-shaped blocks and islands. As the MOP concentration increases, these structures self-assembled into a hexagonally packed structure with an in-plane orientation and a maximum stacking of two layers of MOPs. By contrast, un-functionalized MOPs form a disordered film structure owing to random agglomeration. Evidently, functionalized adipic acid influences the orientation of the MOP network films with uniformly distributed micropores, effectively preventing the formation of intergranular spaces. Additionally, formaldehyde adsorption and desorption experiments revealed that the MOP network films possess superior adsorption and desorption capacities. The proposed approach signifies a breakthrough in the fabrication of homogenous microporous films.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"175 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogenous Microporous Thin Films Assembled Using Discrete Metal–Organic Polyhedra\",\"authors\":\"Soyeon Ko, UnJin Ryu, Ho Yeon Yoo, Jeeyoung Shin, Kyung Min Choi, Dong Gyu Park, Won Ho Choi\",\"doi\":\"10.1002/eem2.12805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Homogeneous films with tailored microporous structures are crucial for several applications; however, fabricating such films presents significant challenges. This is primarily because most microporous materials have crystal sizes in the nano- and micrometer ranges, which inevitably generates intergranular spaces in the films, thereby complicating the fabrication of these thin films. In this study, functionalized metal–organic polyhedra (MOPs) are used as discrete microporous units and assembled into homogenous microporous films. The generation of intergranular spaces is avoided while controlling packing parameters and film thicknesses. Initially, the MOP units, influenced by van der Waals forces between carbon chains of functionalized adipic acids, display an affinity to form spindle-shaped blocks and islands. As the MOP concentration increases, these structures self-assembled into a hexagonally packed structure with an in-plane orientation and a maximum stacking of two layers of MOPs. By contrast, un-functionalized MOPs form a disordered film structure owing to random agglomeration. Evidently, functionalized adipic acid influences the orientation of the MOP network films with uniformly distributed micropores, effectively preventing the formation of intergranular spaces. Additionally, formaldehyde adsorption and desorption experiments revealed that the MOP network films possess superior adsorption and desorption capacities. The proposed approach signifies a breakthrough in the fabrication of homogenous microporous films.\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":\"175 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/eem2.12805\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/eem2.12805","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Homogenous Microporous Thin Films Assembled Using Discrete Metal–Organic Polyhedra
Homogeneous films with tailored microporous structures are crucial for several applications; however, fabricating such films presents significant challenges. This is primarily because most microporous materials have crystal sizes in the nano- and micrometer ranges, which inevitably generates intergranular spaces in the films, thereby complicating the fabrication of these thin films. In this study, functionalized metal–organic polyhedra (MOPs) are used as discrete microporous units and assembled into homogenous microporous films. The generation of intergranular spaces is avoided while controlling packing parameters and film thicknesses. Initially, the MOP units, influenced by van der Waals forces between carbon chains of functionalized adipic acids, display an affinity to form spindle-shaped blocks and islands. As the MOP concentration increases, these structures self-assembled into a hexagonally packed structure with an in-plane orientation and a maximum stacking of two layers of MOPs. By contrast, un-functionalized MOPs form a disordered film structure owing to random agglomeration. Evidently, functionalized adipic acid influences the orientation of the MOP network films with uniformly distributed micropores, effectively preventing the formation of intergranular spaces. Additionally, formaldehyde adsorption and desorption experiments revealed that the MOP network films possess superior adsorption and desorption capacities. The proposed approach signifies a breakthrough in the fabrication of homogenous microporous films.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.