用于资产配置的 Hopfield 网络

Carlo Nicolini, Monisha Gopalan, Jacopo Staiano, Bruno Lepri
{"title":"用于资产配置的 Hopfield 网络","authors":"Carlo Nicolini, Monisha Gopalan, Jacopo Staiano, Bruno Lepri","doi":"arxiv-2407.17645","DOIUrl":null,"url":null,"abstract":"We present the first application of modern Hopfield networks to the problem\nof portfolio optimization. We performed an extensive study based on\ncombinatorial purged cross-validation over several datasets and compared our\nresults to both traditional and deep-learning-based methods for portfolio\nselection. Compared to state-of-the-art deep-learning methods such as\nLong-Short Term Memory networks and Transformers, we find that the proposed\napproach performs on par or better, while providing faster training times and\nbetter stability. Our results show that Modern Hopfield Networks represent a\npromising approach to portfolio optimization, allowing for an efficient,\nscalable, and robust solution for asset allocation, risk management, and\ndynamic rebalancing.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"306 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hopfield Networks for Asset Allocation\",\"authors\":\"Carlo Nicolini, Monisha Gopalan, Jacopo Staiano, Bruno Lepri\",\"doi\":\"arxiv-2407.17645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first application of modern Hopfield networks to the problem\\nof portfolio optimization. We performed an extensive study based on\\ncombinatorial purged cross-validation over several datasets and compared our\\nresults to both traditional and deep-learning-based methods for portfolio\\nselection. Compared to state-of-the-art deep-learning methods such as\\nLong-Short Term Memory networks and Transformers, we find that the proposed\\napproach performs on par or better, while providing faster training times and\\nbetter stability. Our results show that Modern Hopfield Networks represent a\\npromising approach to portfolio optimization, allowing for an efficient,\\nscalable, and robust solution for asset allocation, risk management, and\\ndynamic rebalancing.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"306 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们首次将现代 Hopfield 网络应用于投资组合优化问题。我们在多个数据集上进行了基于组合净化交叉验证的广泛研究,并将我们的结果与传统方法和基于深度学习的投资组合选择方法进行了比较。与最先进的深度学习方法(如长短期记忆网络和 Transformers)相比,我们发现所提出的方法性能相当或更好,同时训练时间更短,稳定性更好。我们的研究结果表明,现代 Hopfield 网络是优化投资组合的最佳方法,可以为资产配置、风险管理和动态再平衡提供高效、可扩展和稳健的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hopfield Networks for Asset Allocation
We present the first application of modern Hopfield networks to the problem of portfolio optimization. We performed an extensive study based on combinatorial purged cross-validation over several datasets and compared our results to both traditional and deep-learning-based methods for portfolio selection. Compared to state-of-the-art deep-learning methods such as Long-Short Term Memory networks and Transformers, we find that the proposed approach performs on par or better, while providing faster training times and better stability. Our results show that Modern Hopfield Networks represent a promising approach to portfolio optimization, allowing for an efficient, scalable, and robust solution for asset allocation, risk management, and dynamic rebalancing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信