利用新闻流微调用于股票回报预测的大型语言模型

Tian Guo, Emmanuel Hauptmann
{"title":"利用新闻流微调用于股票回报预测的大型语言模型","authors":"Tian Guo, Emmanuel Hauptmann","doi":"arxiv-2407.18103","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) and their fine-tuning techniques have\ndemonstrated superior performance in various language understanding and\ngeneration tasks. This paper explores fine-tuning LLMs for stock return\nforecasting with financial newsflow. In quantitative investing, return\nforecasting is fundamental for subsequent tasks like stock picking, portfolio\noptimization, etc. We formulate the model to include text representation and\nforecasting modules. We propose to compare the encoder-only and decoder-only\nLLMs, considering they generate text representations in distinct ways. The\nimpact of these different representations on forecasting performance remains an\nopen question. Meanwhile, we compare two simple methods of integrating LLMs'\ntoken-level representations into the forecasting module. The experiments on\nreal news and investment universes reveal that: (1) aggregated representations\nfrom LLMs' token-level embeddings generally produce return predictions that\nenhance the performance of long-only and long-short portfolios; (2) in the\nrelatively large investment universe, the decoder LLMs-based prediction model\nleads to stronger portfolios, whereas in the small universes, there are no\nconsistent winners. Among the three LLMs studied (DeBERTa, Mistral, Llama),\nMistral performs more robustly across different universes; (3) return\npredictions derived from LLMs' text representations are a strong signal for\nportfolio construction, outperforming conventional sentiment scores.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-Tuning Large Language Models for Stock Return Prediction Using Newsflow\",\"authors\":\"Tian Guo, Emmanuel Hauptmann\",\"doi\":\"arxiv-2407.18103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large language models (LLMs) and their fine-tuning techniques have\\ndemonstrated superior performance in various language understanding and\\ngeneration tasks. This paper explores fine-tuning LLMs for stock return\\nforecasting with financial newsflow. In quantitative investing, return\\nforecasting is fundamental for subsequent tasks like stock picking, portfolio\\noptimization, etc. We formulate the model to include text representation and\\nforecasting modules. We propose to compare the encoder-only and decoder-only\\nLLMs, considering they generate text representations in distinct ways. The\\nimpact of these different representations on forecasting performance remains an\\nopen question. Meanwhile, we compare two simple methods of integrating LLMs'\\ntoken-level representations into the forecasting module. The experiments on\\nreal news and investment universes reveal that: (1) aggregated representations\\nfrom LLMs' token-level embeddings generally produce return predictions that\\nenhance the performance of long-only and long-short portfolios; (2) in the\\nrelatively large investment universe, the decoder LLMs-based prediction model\\nleads to stronger portfolios, whereas in the small universes, there are no\\nconsistent winners. Among the three LLMs studied (DeBERTa, Mistral, Llama),\\nMistral performs more robustly across different universes; (3) return\\npredictions derived from LLMs' text representations are a strong signal for\\nportfolio construction, outperforming conventional sentiment scores.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLM)及其微调技术在各种语言理解和生成任务中表现出了卓越的性能。本文探讨了利用金融新闻流对 LLM 进行微调,以进行股票回报预测。在定量投资中,收益预测是选股、投资组合优化等后续任务的基础。我们制定的模型包括文本表示和预测模块。考虑到纯编码器LLM 和纯解码器LLM 生成文本表征的方式不同,我们建议对两者进行比较。这些不同的表示对预测性能的影响仍是一个悬而未决的问题。同时,我们比较了将 LLMs 的标记级表征集成到预测模块中的两种简单方法。对真实新闻和投资宇宙的实验表明(1) 来自 LLMs 标记级嵌入的聚合表示通常会产生收益预测,从而提高只做多和做多做空投资组合的表现;(2) 在相对较大的投资宇宙中,基于解码器 LLMs 的预测模型会带来更强的投资组合,而在较小的宇宙中,则没有一致的赢家。在所研究的三种 LLMs(DeBERTa、Mistral 和 Llama)中,Mistral 在不同投资领域的表现更为稳健;(3)从 LLMs 文本表征中得出的回报预测是构建投资组合的有力信号,其表现优于传统的情绪评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-Tuning Large Language Models for Stock Return Prediction Using Newsflow
Large language models (LLMs) and their fine-tuning techniques have demonstrated superior performance in various language understanding and generation tasks. This paper explores fine-tuning LLMs for stock return forecasting with financial newsflow. In quantitative investing, return forecasting is fundamental for subsequent tasks like stock picking, portfolio optimization, etc. We formulate the model to include text representation and forecasting modules. We propose to compare the encoder-only and decoder-only LLMs, considering they generate text representations in distinct ways. The impact of these different representations on forecasting performance remains an open question. Meanwhile, we compare two simple methods of integrating LLMs' token-level representations into the forecasting module. The experiments on real news and investment universes reveal that: (1) aggregated representations from LLMs' token-level embeddings generally produce return predictions that enhance the performance of long-only and long-short portfolios; (2) in the relatively large investment universe, the decoder LLMs-based prediction model leads to stronger portfolios, whereas in the small universes, there are no consistent winners. Among the three LLMs studied (DeBERTa, Mistral, Llama), Mistral performs more robustly across different universes; (3) return predictions derived from LLMs' text representations are a strong signal for portfolio construction, outperforming conventional sentiment scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信