新型高硅双相铸钢的微观结构、拉伸和低应力磨料磨损性能

IF 2.6 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Amene Vahidian, Majid Abbasi
{"title":"新型高硅双相铸钢的微观结构、拉伸和低应力磨料磨损性能","authors":"Amene Vahidian, Majid Abbasi","doi":"10.1007/s40962-024-01412-7","DOIUrl":null,"url":null,"abstract":"<p>A dual-phase cast steel with high silicon content has been developed to resist low-stress abrasive wear. The alloy is composed of Fe–0.3C–2.5Si–0.5Cr–0.3Mo–0.1Nb, and the <i>Y</i> block was produced using an investment casting process with an induction melting furnace. Following casting, the block was homogenized and subjected to intercritical annealing heat treatments at 825, 850, and 875 °C before being tempered at 350 °C. The microstructure of the specimens was studied by using optical (OM) and scanning electron microscopy equipped with image analysis software and an energy-dispersive X-ray spectroscopy analyzer. Mechanical properties were evaluated using Vickers hardness and tensile tests at room temperature. The tribological behavior of the specimens was determined using the pin-on-disk wear test method with abrasive paper at a force of 20 N (0.6 MPa). The results showed that the microstructure of the intercritical annealed steels consisted of polygonal and acicular ferrites and tempered martensite accompanied by niobium carbide. The martensite volume fraction, hardness, and yield strength increased with increasing IA temperatures, but the tensile strength remained relatively stable. Additionally, the tribological investigation indicated that the optimal wear resistance was achieved at 850 °C, and micro-cutting was the primary wear mechanism.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":"4 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure, Tensile, and Low-Stress Abrasive Wear Properties of a New High Silicon Dual-Phase Cast Steel\",\"authors\":\"Amene Vahidian, Majid Abbasi\",\"doi\":\"10.1007/s40962-024-01412-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A dual-phase cast steel with high silicon content has been developed to resist low-stress abrasive wear. The alloy is composed of Fe–0.3C–2.5Si–0.5Cr–0.3Mo–0.1Nb, and the <i>Y</i> block was produced using an investment casting process with an induction melting furnace. Following casting, the block was homogenized and subjected to intercritical annealing heat treatments at 825, 850, and 875 °C before being tempered at 350 °C. The microstructure of the specimens was studied by using optical (OM) and scanning electron microscopy equipped with image analysis software and an energy-dispersive X-ray spectroscopy analyzer. Mechanical properties were evaluated using Vickers hardness and tensile tests at room temperature. The tribological behavior of the specimens was determined using the pin-on-disk wear test method with abrasive paper at a force of 20 N (0.6 MPa). The results showed that the microstructure of the intercritical annealed steels consisted of polygonal and acicular ferrites and tempered martensite accompanied by niobium carbide. The martensite volume fraction, hardness, and yield strength increased with increasing IA temperatures, but the tensile strength remained relatively stable. Additionally, the tribological investigation indicated that the optimal wear resistance was achieved at 850 °C, and micro-cutting was the primary wear mechanism.</p>\",\"PeriodicalId\":14231,\"journal\":{\"name\":\"International Journal of Metalcasting\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metalcasting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40962-024-01412-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01412-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种高硅含量的双相铸钢,用于抵抗低应力磨料磨损。这种合金的成分是 Fe-0.3C-2.5Si-0.5Cr-0.3Mo-0.1Nb,Y 型铸块是用感应熔炉通过熔模铸造工艺生产的。浇铸后,块体经过均匀化处理,并在 825、850 和 875 ℃ 下进行临界退火热处理,然后在 350 ℃ 下进行回火。使用配备图像分析软件的光学(OM)和扫描电子显微镜以及能量色散 X 射线光谱分析仪对试样的微观结构进行了研究。室温下的维氏硬度和拉伸试验评估了机械性能。试样的摩擦学性能是通过使用砂纸在 20 牛(0.6 兆帕)的力下进行针盘磨损测试法测定的。结果表明,临界退火钢的微观结构由多边形和针状铁素体、回火马氏体以及碳化铌组成。马氏体体积分数、硬度和屈服强度随着 IA 温度的升高而增加,但抗拉强度保持相对稳定。此外,摩擦学研究表明,850 ℃ 时达到了最佳耐磨性,微切削是主要的磨损机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microstructure, Tensile, and Low-Stress Abrasive Wear Properties of a New High Silicon Dual-Phase Cast Steel

Microstructure, Tensile, and Low-Stress Abrasive Wear Properties of a New High Silicon Dual-Phase Cast Steel

A dual-phase cast steel with high silicon content has been developed to resist low-stress abrasive wear. The alloy is composed of Fe–0.3C–2.5Si–0.5Cr–0.3Mo–0.1Nb, and the Y block was produced using an investment casting process with an induction melting furnace. Following casting, the block was homogenized and subjected to intercritical annealing heat treatments at 825, 850, and 875 °C before being tempered at 350 °C. The microstructure of the specimens was studied by using optical (OM) and scanning electron microscopy equipped with image analysis software and an energy-dispersive X-ray spectroscopy analyzer. Mechanical properties were evaluated using Vickers hardness and tensile tests at room temperature. The tribological behavior of the specimens was determined using the pin-on-disk wear test method with abrasive paper at a force of 20 N (0.6 MPa). The results showed that the microstructure of the intercritical annealed steels consisted of polygonal and acicular ferrites and tempered martensite accompanied by niobium carbide. The martensite volume fraction, hardness, and yield strength increased with increasing IA temperatures, but the tensile strength remained relatively stable. Additionally, the tribological investigation indicated that the optimal wear resistance was achieved at 850 °C, and micro-cutting was the primary wear mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Metalcasting
International Journal of Metalcasting 工程技术-冶金工程
CiteScore
4.20
自引率
42.30%
发文量
174
审稿时长
>12 weeks
期刊介绍: The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信