高多基因风险分类的不稳定性及综合评分的缓解作用

Anika Misra, Buu Truong, Sarah M. Urbut, Yang Sui, Akl C. Fahed, Jordan W. Smoller, Aniruddh Pradip Patel, Pradeep Natarajan
{"title":"高多基因风险分类的不稳定性及综合评分的缓解作用","authors":"Anika Misra, Buu Truong, Sarah M. Urbut, Yang Sui, Akl C. Fahed, Jordan W. Smoller, Aniruddh Pradip Patel, Pradeep Natarajan","doi":"10.1101/2024.07.24.24310897","DOIUrl":null,"url":null,"abstract":"Polygenic risk scores (PRS) continue to improve with novel methods and expanding genome-wide association studies. Healthcare and third-party laboratories are increasingly deploying PRS reports to patients. Although new PRS show improving strengths of association with traits, it is unknown how the classification of high polygenic risk changes across individual PRS for the same trait. Here, we determined classification of high genetic risk from all cataloged PRS for three complex traits. While each PRS for each trait demonstrated generally consistent population-level strengths of associations, classification of individuals in the top 10% of each PRS distribution varied widely. Using the PRSMix framework, which incorporates information across several PRS to improve prediction, we generated sequential add-one-in (AOI) PRSMix_AOI scores based on order of publication. PRSMix_AOIₙ led to improved PRS performance and more consistent high-risk classification compared with the PRSₙ. The PRSMix_AOI approach provides more stable and reliable classification of high-risk as new PRS continue to be generated toward PRS standardization.","PeriodicalId":501375,"journal":{"name":"medRxiv - Genetic and Genomic Medicine","volume":"350 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instability of high polygenic risk classification and mitigation by integrative scoring\",\"authors\":\"Anika Misra, Buu Truong, Sarah M. Urbut, Yang Sui, Akl C. Fahed, Jordan W. Smoller, Aniruddh Pradip Patel, Pradeep Natarajan\",\"doi\":\"10.1101/2024.07.24.24310897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polygenic risk scores (PRS) continue to improve with novel methods and expanding genome-wide association studies. Healthcare and third-party laboratories are increasingly deploying PRS reports to patients. Although new PRS show improving strengths of association with traits, it is unknown how the classification of high polygenic risk changes across individual PRS for the same trait. Here, we determined classification of high genetic risk from all cataloged PRS for three complex traits. While each PRS for each trait demonstrated generally consistent population-level strengths of associations, classification of individuals in the top 10% of each PRS distribution varied widely. Using the PRSMix framework, which incorporates information across several PRS to improve prediction, we generated sequential add-one-in (AOI) PRSMix_AOI scores based on order of publication. PRSMix_AOIₙ led to improved PRS performance and more consistent high-risk classification compared with the PRSₙ. The PRSMix_AOI approach provides more stable and reliable classification of high-risk as new PRS continue to be generated toward PRS standardization.\",\"PeriodicalId\":501375,\"journal\":{\"name\":\"medRxiv - Genetic and Genomic Medicine\",\"volume\":\"350 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Genetic and Genomic Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.24.24310897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Genetic and Genomic Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.24.24310897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着新方法和全基因组关联研究的不断扩大,多基因风险评分(PRS)也在不断改进。医疗机构和第三方实验室越来越多地向患者提供多基因风险评分报告。虽然新的 PRS 显示与性状的关联强度在不断提高,但对于同一性状,不同的 PRS 对多基因高风险的分类是如何变化的还不得而知。在此,我们从所有编入目录的 PRS 中确定了三种复杂性状的高遗传风险分类。虽然每个性状的每个 PRS 都表现出基本一致的群体水平关联强度,但每个 PRS 分布的前 10%个体的分类却差异很大。PRSMix 框架整合了多个 PRS 的信息以改进预测,我们利用该框架,根据发表顺序生成了连续的 PRSMix_AOI 分数。与 PRSₙ 相比,PRSMix_AOIₙ 提高了 PRS 性能,并使高风险分类更加一致。随着 PRS 标准化进程的推进,新的 PRS 不断涌现,PRSMix_AOI 方法可提供更稳定、更可靠的高风险分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instability of high polygenic risk classification and mitigation by integrative scoring
Polygenic risk scores (PRS) continue to improve with novel methods and expanding genome-wide association studies. Healthcare and third-party laboratories are increasingly deploying PRS reports to patients. Although new PRS show improving strengths of association with traits, it is unknown how the classification of high polygenic risk changes across individual PRS for the same trait. Here, we determined classification of high genetic risk from all cataloged PRS for three complex traits. While each PRS for each trait demonstrated generally consistent population-level strengths of associations, classification of individuals in the top 10% of each PRS distribution varied widely. Using the PRSMix framework, which incorporates information across several PRS to improve prediction, we generated sequential add-one-in (AOI) PRSMix_AOI scores based on order of publication. PRSMix_AOIₙ led to improved PRS performance and more consistent high-risk classification compared with the PRSₙ. The PRSMix_AOI approach provides more stable and reliable classification of high-risk as new PRS continue to be generated toward PRS standardization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信