通过相界面工程增强 Er3+/Yb3+ 共掺杂高磷硅玻璃和纤维的抗辐射能力

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
He-He Dong, Fan Wang, Yi-Ming Zhu, Qiu-Bai Yang, Chong-Yun Shao, Ying-Gang Chen, Shi-Kai Wang, Chun-Lei Yu, Li-Li Hu
{"title":"通过相界面工程增强 Er3+/Yb3+ 共掺杂高磷硅玻璃和纤维的抗辐射能力","authors":"He-He Dong,&nbsp;Fan Wang,&nbsp;Yi-Ming Zhu,&nbsp;Qiu-Bai Yang,&nbsp;Chong-Yun Shao,&nbsp;Ying-Gang Chen,&nbsp;Shi-Kai Wang,&nbsp;Chun-Lei Yu,&nbsp;Li-Li Hu","doi":"10.1007/s10971-024-06483-w","DOIUrl":null,"url":null,"abstract":"<div><p>High-energy irradiation significantly increases the optical losses and noise coefficients of laser materials, leading to a substantial decrease in the slope efficiency or gain performance of laser output. To address this issue, we propose a strategy to enhance the radiation resistance of glasses/fibers by introducing phase interfaces. Based on the sol–gel method, through phase-separation techniques and high-temperature annealing treatments, silica-rich and phosphorus-rich phases were formed in erbium-ytterbium co-doped high-phosphorus silica glass, and nanoscale phase interfaces with specific densities, stability levels, and homogeneous distributions of doped elements were constructed between the phases. Using high-resolution transmission electron microscopy, nuclear magnetic resonance, and spectroscopic analyses, we tracked the evolution of the internal microstructure of the glasses at the atomic level. The findings confirmed that annealing effectively controlled the density of the phase interfaces formed. Under 1 kGy X-ray irradiation, glasses with effective phase interfaces exhibited significant reduction in radiation-induced attenuation (RIA) and improvement in photoluminescence intensity compared to pristine glasses. This indicated that effective phase interfaces could act as complex centers for irradiation-induced point defects, absorbing radiant energy and trapping these defects, thus mitigating high-energy radiation-induced damages. Furthermore, online irradiation tests on the Er<sup>3+</sup>/Yb<sup>3+</sup> co-doped silica fibers supported this result. Compared to pristine fiber, fibers annealed for 3 h and annealed for 20 h with different phase interfacial densities showed 45% and 73% lower RIA at 1080 nm, respectively.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Erbium-ytterbium co-doped high-phosphorus silica glasses/fibers with nanoscale phase interfaces were prepared using a modified sol–gel method. The density of the phase interfaces increased with annealing, which significantly improved their radiation resistance. Online irradiation showed that the radiation-induced attenuation at 1080 nm reduced by 73% compared with that of pristine fibers.</p></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"111 3","pages":"909 - 920"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced radiation resistance of Er3+/Yb3+ co-doped high-phosphorus silica glasses and fibers via phase-interface engineering\",\"authors\":\"He-He Dong,&nbsp;Fan Wang,&nbsp;Yi-Ming Zhu,&nbsp;Qiu-Bai Yang,&nbsp;Chong-Yun Shao,&nbsp;Ying-Gang Chen,&nbsp;Shi-Kai Wang,&nbsp;Chun-Lei Yu,&nbsp;Li-Li Hu\",\"doi\":\"10.1007/s10971-024-06483-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-energy irradiation significantly increases the optical losses and noise coefficients of laser materials, leading to a substantial decrease in the slope efficiency or gain performance of laser output. To address this issue, we propose a strategy to enhance the radiation resistance of glasses/fibers by introducing phase interfaces. Based on the sol–gel method, through phase-separation techniques and high-temperature annealing treatments, silica-rich and phosphorus-rich phases were formed in erbium-ytterbium co-doped high-phosphorus silica glass, and nanoscale phase interfaces with specific densities, stability levels, and homogeneous distributions of doped elements were constructed between the phases. Using high-resolution transmission electron microscopy, nuclear magnetic resonance, and spectroscopic analyses, we tracked the evolution of the internal microstructure of the glasses at the atomic level. The findings confirmed that annealing effectively controlled the density of the phase interfaces formed. Under 1 kGy X-ray irradiation, glasses with effective phase interfaces exhibited significant reduction in radiation-induced attenuation (RIA) and improvement in photoluminescence intensity compared to pristine glasses. This indicated that effective phase interfaces could act as complex centers for irradiation-induced point defects, absorbing radiant energy and trapping these defects, thus mitigating high-energy radiation-induced damages. Furthermore, online irradiation tests on the Er<sup>3+</sup>/Yb<sup>3+</sup> co-doped silica fibers supported this result. Compared to pristine fiber, fibers annealed for 3 h and annealed for 20 h with different phase interfacial densities showed 45% and 73% lower RIA at 1080 nm, respectively.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Erbium-ytterbium co-doped high-phosphorus silica glasses/fibers with nanoscale phase interfaces were prepared using a modified sol–gel method. The density of the phase interfaces increased with annealing, which significantly improved their radiation resistance. Online irradiation showed that the radiation-induced attenuation at 1080 nm reduced by 73% compared with that of pristine fibers.</p></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"111 3\",\"pages\":\"909 - 920\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06483-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06483-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

高能量辐照会显著增加激光材料的光学损耗和噪声系数,导致激光输出的斜率效率或增益性能大幅下降。针对这一问题,我们提出了一种通过引入相界面来增强玻璃/纤维抗辐射能力的策略。基于溶胶-凝胶法,通过相分离技术和高温退火处理,在铒镱共掺高磷硅玻璃中形成了富硅相和富磷相,并在两相之间构建了具有特定密度、稳定度和掺杂元素均匀分布的纳米级相界面。利用高分辨率透射电子显微镜、核磁共振和光谱分析,我们跟踪了玻璃内部微观结构在原子水平上的演变。研究结果证实,退火能有效控制所形成的相界面密度。在 1 kGy X 射线辐照下,与原始玻璃相比,具有有效相界面的玻璃表现出辐射诱导衰减(RIA)的显著降低和光致发光强度的提高。这表明有效相界面可以作为辐照诱发点缺陷的复合中心,吸收辐射能并捕获这些缺陷,从而减轻高能辐射诱发的损伤。此外,对 Er3+/Yb3+ 共掺杂二氧化硅纤维进行的在线辐照测试也证实了这一结果。与原始纤维相比,退火 3 小时和退火 20 小时、具有不同相界面密度的纤维在 1080 纳米波长处的 RIA 分别降低了 45% 和 73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced radiation resistance of Er3+/Yb3+ co-doped high-phosphorus silica glasses and fibers via phase-interface engineering

Enhanced radiation resistance of Er3+/Yb3+ co-doped high-phosphorus silica glasses and fibers via phase-interface engineering

High-energy irradiation significantly increases the optical losses and noise coefficients of laser materials, leading to a substantial decrease in the slope efficiency or gain performance of laser output. To address this issue, we propose a strategy to enhance the radiation resistance of glasses/fibers by introducing phase interfaces. Based on the sol–gel method, through phase-separation techniques and high-temperature annealing treatments, silica-rich and phosphorus-rich phases were formed in erbium-ytterbium co-doped high-phosphorus silica glass, and nanoscale phase interfaces with specific densities, stability levels, and homogeneous distributions of doped elements were constructed between the phases. Using high-resolution transmission electron microscopy, nuclear magnetic resonance, and spectroscopic analyses, we tracked the evolution of the internal microstructure of the glasses at the atomic level. The findings confirmed that annealing effectively controlled the density of the phase interfaces formed. Under 1 kGy X-ray irradiation, glasses with effective phase interfaces exhibited significant reduction in radiation-induced attenuation (RIA) and improvement in photoluminescence intensity compared to pristine glasses. This indicated that effective phase interfaces could act as complex centers for irradiation-induced point defects, absorbing radiant energy and trapping these defects, thus mitigating high-energy radiation-induced damages. Furthermore, online irradiation tests on the Er3+/Yb3+ co-doped silica fibers supported this result. Compared to pristine fiber, fibers annealed for 3 h and annealed for 20 h with different phase interfacial densities showed 45% and 73% lower RIA at 1080 nm, respectively.

Graphical Abstract

Erbium-ytterbium co-doped high-phosphorus silica glasses/fibers with nanoscale phase interfaces were prepared using a modified sol–gel method. The density of the phase interfaces increased with annealing, which significantly improved their radiation resistance. Online irradiation showed that the radiation-induced attenuation at 1080 nm reduced by 73% compared with that of pristine fibers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信