涂覆在塑料基底上的聚(3-己基噻吩)薄膜作为有机光阳极,在光照下用于水氧化/氧演化

IF 3.1 4区 工程技术 Q2 POLYMER SCIENCE
Hiromi Shinohara, Hiroyuki Nishide
{"title":"涂覆在塑料基底上的聚(3-己基噻吩)薄膜作为有机光阳极,在光照下用于水氧化/氧演化","authors":"Hiromi Shinohara, Hiroyuki Nishide","doi":"10.1002/pat.6524","DOIUrl":null,"url":null,"abstract":"Poly(3‐hexylthiophene) (P3HT) film was applied as a photoanode on an electron‐extracting layer‐coated upon a current‐collecting plastic substrate. The film soaked in an aqueous solution (pH 12) exhibited an enhanced anodic current with light illumination, and the photocurrent density (<jats:italic>J</jats:italic>) reached almost 100 μA/cm<jats:sup>2</jats:sup> for its wound cylinder, which was accompanied by oxygen bubble evolution. The light ON/OFF response, light‐intensity proportion, and wavelength‐dependency of the <jats:italic>J</jats:italic> value supported the photo‐electrolytic function of the P3HT film. The hole‐injection efficiency of the film estimated for water oxidation using a solution involving a sacrificial reagent, was relatively high in the range of 46%–86%. Although an apparent activation energy of 39 kJ/mol for the electrolytic water oxidation in the dark suggested a chemical but catalytic pathway for the film anode, the temperature independence of the photocurrent indicated direct hole‐injection into water or hydroxide ions. The photoanode performance of the P3HT film for water oxidation was discussed in relation to the energy diagram including the highest occupied molecular orbital level.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"4 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poly(3‐hexylthiophene) film coated on plastic substrate as an organic photoanode for water oxidation/oxygen evolution with light illumination\",\"authors\":\"Hiromi Shinohara, Hiroyuki Nishide\",\"doi\":\"10.1002/pat.6524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poly(3‐hexylthiophene) (P3HT) film was applied as a photoanode on an electron‐extracting layer‐coated upon a current‐collecting plastic substrate. The film soaked in an aqueous solution (pH 12) exhibited an enhanced anodic current with light illumination, and the photocurrent density (<jats:italic>J</jats:italic>) reached almost 100 μA/cm<jats:sup>2</jats:sup> for its wound cylinder, which was accompanied by oxygen bubble evolution. The light ON/OFF response, light‐intensity proportion, and wavelength‐dependency of the <jats:italic>J</jats:italic> value supported the photo‐electrolytic function of the P3HT film. The hole‐injection efficiency of the film estimated for water oxidation using a solution involving a sacrificial reagent, was relatively high in the range of 46%–86%. Although an apparent activation energy of 39 kJ/mol for the electrolytic water oxidation in the dark suggested a chemical but catalytic pathway for the film anode, the temperature independence of the photocurrent indicated direct hole‐injection into water or hydroxide ions. The photoanode performance of the P3HT film for water oxidation was discussed in relation to the energy diagram including the highest occupied molecular orbital level.\",\"PeriodicalId\":20382,\"journal\":{\"name\":\"Polymers for Advanced Technologies\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers for Advanced Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pat.6524\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6524","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

将聚(3-己基噻吩)(P3HT)薄膜作为光阳极应用于涂覆在集电塑料基底上的电子萃取层。浸泡在水溶液(pH 值为 12)中的薄膜在光照下显示出增强的阳极电流,其缠绕圆柱体的光电流密度(J)几乎达到 100 μA/cm2,并伴随着氧气泡的演化。光的开/关响应、光强比例和 J 值的波长依赖性都支持 P3HT 薄膜的光电解功能。在使用牺牲试剂溶液进行水氧化时,薄膜的空穴注入效率相对较高,在 46%-86% 之间。虽然黑暗中电解水氧化的表观活化能为 39 kJ/mol,这表明薄膜阳极具有化学催化途径,但光电流与温度无关,这表明孔直接注入水或氢氧根离子。我们结合能图(包括最高占据的分子轨道水平)讨论了 P3HT 薄膜在水氧化方面的光阳极性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poly(3‐hexylthiophene) film coated on plastic substrate as an organic photoanode for water oxidation/oxygen evolution with light illumination
Poly(3‐hexylthiophene) (P3HT) film was applied as a photoanode on an electron‐extracting layer‐coated upon a current‐collecting plastic substrate. The film soaked in an aqueous solution (pH 12) exhibited an enhanced anodic current with light illumination, and the photocurrent density (J) reached almost 100 μA/cm2 for its wound cylinder, which was accompanied by oxygen bubble evolution. The light ON/OFF response, light‐intensity proportion, and wavelength‐dependency of the J value supported the photo‐electrolytic function of the P3HT film. The hole‐injection efficiency of the film estimated for water oxidation using a solution involving a sacrificial reagent, was relatively high in the range of 46%–86%. Although an apparent activation energy of 39 kJ/mol for the electrolytic water oxidation in the dark suggested a chemical but catalytic pathway for the film anode, the temperature independence of the photocurrent indicated direct hole‐injection into water or hydroxide ions. The photoanode performance of the P3HT film for water oxidation was discussed in relation to the energy diagram including the highest occupied molecular orbital level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers for Advanced Technologies
Polymers for Advanced Technologies 工程技术-高分子科学
CiteScore
6.20
自引率
5.90%
发文量
337
审稿时长
2.1 months
期刊介绍: Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives. Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century. Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology. Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信