具有准最大嵌入维数的数值半群

IF 1.1 4区 数学 Q1 MATHEMATICS
D. Llena, J. C. Rosales
{"title":"具有准最大嵌入维数的数值半群","authors":"D. Llena, J. C. Rosales","doi":"10.1007/s11587-024-00872-7","DOIUrl":null,"url":null,"abstract":"<p>Consider <span>\\(x\\in {\\mathbb {N}}\\setminus \\{0\\}\\)</span>. A QMED(<i>x</i>)-semigroup is a numerical semigroup <i>S</i> such that <span>\\(S{\\setminus }\\{0\\}=\\{a+kx \\mid a\\in {\\text {msg}}(S) \\text{ and } k\\in {\\mathbb {N}}\\}\\)</span> where <span>\\({\\text {msg}}(S)\\)</span> denotes the minimal system of generators of <i>S</i>. Note that if <i>x</i> is the multiplicity of <i>S</i> then <i>S</i> is a maximal embedding dimension numerical semigroup. In this work, we show that the set of all QMED(<i>x</i>)-semigroups is a Frobenius pseudo-variety giving the associated tree. Furthermore, we give formulas to obtain the Frobenius number, type, and genus of this class of semigroups.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"67 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical semigroups with quasi maximal embedding dimension\",\"authors\":\"D. Llena, J. C. Rosales\",\"doi\":\"10.1007/s11587-024-00872-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider <span>\\\\(x\\\\in {\\\\mathbb {N}}\\\\setminus \\\\{0\\\\}\\\\)</span>. A QMED(<i>x</i>)-semigroup is a numerical semigroup <i>S</i> such that <span>\\\\(S{\\\\setminus }\\\\{0\\\\}=\\\\{a+kx \\\\mid a\\\\in {\\\\text {msg}}(S) \\\\text{ and } k\\\\in {\\\\mathbb {N}}\\\\}\\\\)</span> where <span>\\\\({\\\\text {msg}}(S)\\\\)</span> denotes the minimal system of generators of <i>S</i>. Note that if <i>x</i> is the multiplicity of <i>S</i> then <i>S</i> is a maximal embedding dimension numerical semigroup. In this work, we show that the set of all QMED(<i>x</i>)-semigroups is a Frobenius pseudo-variety giving the associated tree. Furthermore, we give formulas to obtain the Frobenius number, type, and genus of this class of semigroups.</p>\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-024-00872-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00872-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑 \(x\in {\mathbb {N}}\setminus\{0\}\).一个 QMED(x)-semigroup 是一个数值半群 S,使得 \(S{setminus }\{0\}=\{a+kx \mid a\in {\text {msg}}(S) \text{ and } k\in {\mathbb {N}}\}) 其中 \({\text {msg}}(S)\) 表示 S 的最小子系统。请注意,如果 x 是 S 的乘数,那么 S 就是一个最大嵌入维数半群。在这项工作中,我们证明了所有 QMED(x)-semigroups 的集合是一个给出相关树的 Frobenius 伪变体。此外,我们还给出了这一类半群的弗罗贝尼斯数、类型和属的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical semigroups with quasi maximal embedding dimension

Numerical semigroups with quasi maximal embedding dimension

Consider \(x\in {\mathbb {N}}\setminus \{0\}\). A QMED(x)-semigroup is a numerical semigroup S such that \(S{\setminus }\{0\}=\{a+kx \mid a\in {\text {msg}}(S) \text{ and } k\in {\mathbb {N}}\}\) where \({\text {msg}}(S)\) denotes the minimal system of generators of S. Note that if x is the multiplicity of S then S is a maximal embedding dimension numerical semigroup. In this work, we show that the set of all QMED(x)-semigroups is a Frobenius pseudo-variety giving the associated tree. Furthermore, we give formulas to obtain the Frobenius number, type, and genus of this class of semigroups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信