非整数维度中的玻恩-奥本海默近似的可靠性

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
D. S. Rosa, T. Frederico, R. M. Francisco, G. Krein, M. T. Yamashita
{"title":"非整数维度中的玻恩-奥本海默近似的可靠性","authors":"D. S. Rosa,&nbsp;T. Frederico,&nbsp;R. M. Francisco,&nbsp;G. Krein,&nbsp;M. T. Yamashita","doi":"10.1007/s00601-024-01946-w","DOIUrl":null,"url":null,"abstract":"<div><p>We address the question of the reliability of the Born-Oppenheimer (BO) approximation for a mass-imbalanced resonant three-body system embedded in noninteger dimensions. We address this question within the problem of a system of currently experimental interest, namely <span>\\(^7\\)</span>Li<span>\\(-^{87}\\)</span>Rb<span>\\(_2\\)</span>. We compare the Efimov scale parameter as well as the wave functions obtained using the BO approximation with those obtained using the Bethe-Peierls boundary condition.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability of the Born-Oppenheimer Approximation in Noninteger Dimensions\",\"authors\":\"D. S. Rosa,&nbsp;T. Frederico,&nbsp;R. M. Francisco,&nbsp;G. Krein,&nbsp;M. T. Yamashita\",\"doi\":\"10.1007/s00601-024-01946-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We address the question of the reliability of the Born-Oppenheimer (BO) approximation for a mass-imbalanced resonant three-body system embedded in noninteger dimensions. We address this question within the problem of a system of currently experimental interest, namely <span>\\\\(^7\\\\)</span>Li<span>\\\\(-^{87}\\\\)</span>Rb<span>\\\\(_2\\\\)</span>. We compare the Efimov scale parameter as well as the wave functions obtained using the BO approximation with those obtained using the Bethe-Peierls boundary condition.</p></div>\",\"PeriodicalId\":556,\"journal\":{\"name\":\"Few-Body Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Few-Body Systems\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00601-024-01946-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01946-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了嵌入非整数维的质量不平衡共振三体系统的玻恩-奥本海默(Born-Oppenheimer,BO)近似的可靠性问题。我们在一个目前实验感兴趣的系统,即 \(^7\)Li\(-^{87}\)Rb\(_2\) 的问题中解决这个问题。我们将埃菲莫夫尺度参数以及使用 BO 近似得到的波函数与使用 Bethe-Peierls 边界条件得到的波函数进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reliability of the Born-Oppenheimer Approximation in Noninteger Dimensions

Reliability of the Born-Oppenheimer Approximation in Noninteger Dimensions

We address the question of the reliability of the Born-Oppenheimer (BO) approximation for a mass-imbalanced resonant three-body system embedded in noninteger dimensions. We address this question within the problem of a system of currently experimental interest, namely \(^7\)Li\(-^{87}\)Rb\(_2\). We compare the Efimov scale parameter as well as the wave functions obtained using the BO approximation with those obtained using the Bethe-Peierls boundary condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信