用于水质控制的余氯监测的最新发展和可持续性:重要综述

Yohanz Khor, A. R. Abdul Aziz and Su Sin Chong
{"title":"用于水质控制的余氯监测的最新发展和可持续性:重要综述","authors":"Yohanz Khor, A. R. Abdul Aziz and Su Sin Chong","doi":"10.1039/D4SU00188E","DOIUrl":null,"url":null,"abstract":"<p >Clean and safe water is a vital resource for human life. To ensure that consumable water is bacteria-free, water treatment, including the widely used chlorination process, is performed. Free chlorine resulting from the chlorination process in consumable water is a dangerous analyte and it is one of the vital parameters in water quality monitoring. Global guidelines state that free chlorine in consumable water should be controlled at 0.2–5.0 mg L; deviations from this concentration range could cause consumers to suffer from dire health effects. To control the concentration within the said range, various methods for free chlorine monitoring have been developed in recent years, categorized into conventional, optical and electrochemical methods. However, limitations such as high cost and complexity of analysis prevent these conventional methods from meeting the “Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free and Deliverable to end users” criteria for diagnostic tests set by the World Health Organization. Paper-based methods are therefore introduced to replace the conventional methods in the hope of meeting the criteria. However, the paper-based methods are still confined to the lab scale and are highly dependent on chemicals for the detection of free chlorine. Therefore, the capabilities of carbon quantum dots are introduced as a suitable indicator for free chlorine measurement. Using carbon quantum dots as an indicator is recommended for the future development of sustainable portable paper-based sensors due to their excellent absorption and fluorescent properties; in addition, carbon quantum dots can be synthesized from natural resources.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 9","pages":" 2468-2485"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00188e?page=search","citationCount":"0","resultStr":"{\"title\":\"Recent developments and sustainability in monitoring chlorine residuals for water quality control: a critical review†\",\"authors\":\"Yohanz Khor, A. R. Abdul Aziz and Su Sin Chong\",\"doi\":\"10.1039/D4SU00188E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Clean and safe water is a vital resource for human life. To ensure that consumable water is bacteria-free, water treatment, including the widely used chlorination process, is performed. Free chlorine resulting from the chlorination process in consumable water is a dangerous analyte and it is one of the vital parameters in water quality monitoring. Global guidelines state that free chlorine in consumable water should be controlled at 0.2–5.0 mg L; deviations from this concentration range could cause consumers to suffer from dire health effects. To control the concentration within the said range, various methods for free chlorine monitoring have been developed in recent years, categorized into conventional, optical and electrochemical methods. However, limitations such as high cost and complexity of analysis prevent these conventional methods from meeting the “Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free and Deliverable to end users” criteria for diagnostic tests set by the World Health Organization. Paper-based methods are therefore introduced to replace the conventional methods in the hope of meeting the criteria. However, the paper-based methods are still confined to the lab scale and are highly dependent on chemicals for the detection of free chlorine. Therefore, the capabilities of carbon quantum dots are introduced as a suitable indicator for free chlorine measurement. Using carbon quantum dots as an indicator is recommended for the future development of sustainable portable paper-based sensors due to their excellent absorption and fluorescent properties; in addition, carbon quantum dots can be synthesized from natural resources.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 9\",\"pages\":\" 2468-2485\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00188e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00188e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00188e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

饮用水中的游离氯是一种危险的分析物,也是水质监测的重要参数之一。在马来西亚,国家指导方针规定,饮用水中的游离氯应控制在 0.2 - 5.0 毫克/升的范围内;偏离这一浓度范围会对消费者的健康造成严重影响。为了将游离氯的浓度控制在上述范围内,近年来开发了多种游离氯监测方法,并将其商业化,其中包括色轮检测试剂盒和数字比色计。然而,由于价格昂贵、分析复杂等限制,这些传统方法无法达到世界卫生组织(WHO)制定的疾病控制检测标准 ASSURED(经济实惠、灵敏、特异、用户友好、快速稳健、无需设备、可提供给最终用户)。因此,我们引入了纸质方法来取代传统方法,希望能达到 ASSURED 标准。本文旨在概述用于监测水中游离氯的传统方法和基于纸张的方法,并介绍碳量子点(CQDs)作为游离氯测量指标的功能。由于碳量子点具有出色的吸收和荧光特性,因此建议在未来开发可持续便携式纸基传感器时使用碳量子点作为指示剂;此外,碳量子点还可以从自然资源中合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent developments and sustainability in monitoring chlorine residuals for water quality control: a critical review†

Recent developments and sustainability in monitoring chlorine residuals for water quality control: a critical review†

Clean and safe water is a vital resource for human life. To ensure that consumable water is bacteria-free, water treatment, including the widely used chlorination process, is performed. Free chlorine resulting from the chlorination process in consumable water is a dangerous analyte and it is one of the vital parameters in water quality monitoring. Global guidelines state that free chlorine in consumable water should be controlled at 0.2–5.0 mg L; deviations from this concentration range could cause consumers to suffer from dire health effects. To control the concentration within the said range, various methods for free chlorine monitoring have been developed in recent years, categorized into conventional, optical and electrochemical methods. However, limitations such as high cost and complexity of analysis prevent these conventional methods from meeting the “Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free and Deliverable to end users” criteria for diagnostic tests set by the World Health Organization. Paper-based methods are therefore introduced to replace the conventional methods in the hope of meeting the criteria. However, the paper-based methods are still confined to the lab scale and are highly dependent on chemicals for the detection of free chlorine. Therefore, the capabilities of carbon quantum dots are introduced as a suitable indicator for free chlorine measurement. Using carbon quantum dots as an indicator is recommended for the future development of sustainable portable paper-based sensors due to their excellent absorption and fluorescent properties; in addition, carbon quantum dots can be synthesized from natural resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信