在纸基激光诱导石墨烯上电化学沉积氧化锰以制造可持续的高能量密度超级电容器

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Maykel dos Santos Klem, Rodrigo Abreu, Tomás Pinheiro, João Coelho, Neri Alves, Rodrigo Martins
{"title":"在纸基激光诱导石墨烯上电化学沉积氧化锰以制造可持续的高能量密度超级电容器","authors":"Maykel dos Santos Klem,&nbsp;Rodrigo Abreu,&nbsp;Tomás Pinheiro,&nbsp;João Coelho,&nbsp;Neri Alves,&nbsp;Rodrigo Martins","doi":"10.1002/adsu.202400254","DOIUrl":null,"url":null,"abstract":"<p>Laser-induced graphene (LIG) is widely used to fabricate microsupercapacitors (MSCs) on various sustainable substrates, such as wood, cork, and lignin. However, the fabrication of MSCs, especially high energy density devices on paper, has rarely been reported. In this work, LIG electrodes are fabricated on wax-coated paper, followed by electrochemical deposition of manganese oxide (MnO<sub>2</sub>). The obtained LIG/MnO<sub>2</sub> supercapacitors exhibit a maximum areal capacitance of 86.9 mF cm<sup>−2</sup>, while a device with pristine LIG electrodes exhibit a capacitance of 9.1 mF cm<sup>−2</sup>, both measured at a current density of 0.1 mA cm<sup>−2</sup>. In addition, the supercapacitor exhibits good cycling stability, retaining 80% of its initial capacitance after 1000 charge/discharge cycles at a current density of 1 mA cm<sup>−2</sup>. Notably, the LIG/MnO<sub>2</sub> supercapacitor exhibits an exceptionally high energy density of 7.3 µWh cm<sup>−2</sup> at a power density of 38.8 µW cm<sup>−2</sup>. In summary, a simple, fast, scalable, reproducible, and energy-efficient fabrication method is represented using electrochemical deposition of manganese oxide on paper-based laser-induced graphene, which are natural, abundant, and sustainable materials, paving the way for large-scale production of environmentally friendly supercapacitors.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 12","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400254","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Deposition of Manganese Oxide on Paper-Based Laser-Induced Graphene for the Fabrication of Sustainable High-Energy-Density Supercapacitors\",\"authors\":\"Maykel dos Santos Klem,&nbsp;Rodrigo Abreu,&nbsp;Tomás Pinheiro,&nbsp;João Coelho,&nbsp;Neri Alves,&nbsp;Rodrigo Martins\",\"doi\":\"10.1002/adsu.202400254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Laser-induced graphene (LIG) is widely used to fabricate microsupercapacitors (MSCs) on various sustainable substrates, such as wood, cork, and lignin. However, the fabrication of MSCs, especially high energy density devices on paper, has rarely been reported. In this work, LIG electrodes are fabricated on wax-coated paper, followed by electrochemical deposition of manganese oxide (MnO<sub>2</sub>). The obtained LIG/MnO<sub>2</sub> supercapacitors exhibit a maximum areal capacitance of 86.9 mF cm<sup>−2</sup>, while a device with pristine LIG electrodes exhibit a capacitance of 9.1 mF cm<sup>−2</sup>, both measured at a current density of 0.1 mA cm<sup>−2</sup>. In addition, the supercapacitor exhibits good cycling stability, retaining 80% of its initial capacitance after 1000 charge/discharge cycles at a current density of 1 mA cm<sup>−2</sup>. Notably, the LIG/MnO<sub>2</sub> supercapacitor exhibits an exceptionally high energy density of 7.3 µWh cm<sup>−2</sup> at a power density of 38.8 µW cm<sup>−2</sup>. In summary, a simple, fast, scalable, reproducible, and energy-efficient fabrication method is represented using electrochemical deposition of manganese oxide on paper-based laser-induced graphene, which are natural, abundant, and sustainable materials, paving the way for large-scale production of environmentally friendly supercapacitors.</p>\",\"PeriodicalId\":7294,\"journal\":{\"name\":\"Advanced Sustainable Systems\",\"volume\":\"8 12\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400254\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sustainable Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400254\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400254","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

激光诱导石墨烯(LIG)被广泛用于在木材、软木和木质素等各种可持续基底上制造微型超级电容器(MSC)。然而,在纸上制造 MSC,尤其是高能量密度器件的研究却鲜有报道。在这项工作中,我们在涂蜡纸上制造了 LIG 电极,然后进行了氧化锰(MnO2)的电化学沉积。所获得的 LIG/MnO2 超级电容器的最大电容值为 86.9 mF cm-2,而使用原始 LIG 电极的装置的电容值为 9.1 mF cm-2,两者都是在电流密度为 0.1 mA cm-2 时测量的。此外,这种超级电容器还具有良好的循环稳定性,在电流密度为 1 mA cm-2 的条件下,经过 1000 次充放电循环后,仍能保持 80% 的初始电容。值得注意的是,在功率密度为 38.8 µW cm-2 的情况下,LIG/MnO2 超级电容器的能量密度高达 7.3 µWh cm-2。总之,利用电化学沉积氧化锰在纸基激光诱导石墨烯上的方法,代表了一种简单、快速、可扩展、可重现和高能效的制造方法,这些材料都是天然、丰富和可持续的材料,为大规模生产环境友好型超级电容器铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrochemical Deposition of Manganese Oxide on Paper-Based Laser-Induced Graphene for the Fabrication of Sustainable High-Energy-Density Supercapacitors

Electrochemical Deposition of Manganese Oxide on Paper-Based Laser-Induced Graphene for the Fabrication of Sustainable High-Energy-Density Supercapacitors

Laser-induced graphene (LIG) is widely used to fabricate microsupercapacitors (MSCs) on various sustainable substrates, such as wood, cork, and lignin. However, the fabrication of MSCs, especially high energy density devices on paper, has rarely been reported. In this work, LIG electrodes are fabricated on wax-coated paper, followed by electrochemical deposition of manganese oxide (MnO2). The obtained LIG/MnO2 supercapacitors exhibit a maximum areal capacitance of 86.9 mF cm−2, while a device with pristine LIG electrodes exhibit a capacitance of 9.1 mF cm−2, both measured at a current density of 0.1 mA cm−2. In addition, the supercapacitor exhibits good cycling stability, retaining 80% of its initial capacitance after 1000 charge/discharge cycles at a current density of 1 mA cm−2. Notably, the LIG/MnO2 supercapacitor exhibits an exceptionally high energy density of 7.3 µWh cm−2 at a power density of 38.8 µW cm−2. In summary, a simple, fast, scalable, reproducible, and energy-efficient fabrication method is represented using electrochemical deposition of manganese oxide on paper-based laser-induced graphene, which are natural, abundant, and sustainable materials, paving the way for large-scale production of environmentally friendly supercapacitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信