{"title":"基于直接负载流方法的分布式发电装置架空馈线故障定位方法","authors":"Charalampos G. Arsoniadis;Vassilis C. Nikolaidis","doi":"10.35833/MPCE.2023.000379","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel fault location method for overhead feeders, which is based on the direct load flow approach. The method is developed in the phase domain to effectively deal with unbalanced network conditions, while it can also handle distributed generation (DG) units of any type without requiring equivalent models. By utilizing the line series parameters and synchronized or unsynchronized voltage and current phasor measurements taken from the sources, the method reliably identifies the most probable faulty sections. With the aid of an index, the exact faulty section among the multiple candidates is determined. Extensive simulation studies for the IEEE 123-bus test feeder demonstrate that the proposed method accurately estimates the fault position under numerous short-circuit conditions with varying pre-fault system loading conditions, fault resistances, and measurement errors. The proposed method is promising for practical applications due to the limited number of required measurement devices as well as the short computation time.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 4","pages":"1135-1146"},"PeriodicalIF":5.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10396834","citationCount":"0","resultStr":"{\"title\":\"Fault Location Method for Overhead Feeders with Distributed Generation Units Based on Direct Load Flow Approach\",\"authors\":\"Charalampos G. Arsoniadis;Vassilis C. Nikolaidis\",\"doi\":\"10.35833/MPCE.2023.000379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel fault location method for overhead feeders, which is based on the direct load flow approach. The method is developed in the phase domain to effectively deal with unbalanced network conditions, while it can also handle distributed generation (DG) units of any type without requiring equivalent models. By utilizing the line series parameters and synchronized or unsynchronized voltage and current phasor measurements taken from the sources, the method reliably identifies the most probable faulty sections. With the aid of an index, the exact faulty section among the multiple candidates is determined. Extensive simulation studies for the IEEE 123-bus test feeder demonstrate that the proposed method accurately estimates the fault position under numerous short-circuit conditions with varying pre-fault system loading conditions, fault resistances, and measurement errors. The proposed method is promising for practical applications due to the limited number of required measurement devices as well as the short computation time.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"12 4\",\"pages\":\"1135-1146\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10396834\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10396834/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10396834/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fault Location Method for Overhead Feeders with Distributed Generation Units Based on Direct Load Flow Approach
This paper proposes a novel fault location method for overhead feeders, which is based on the direct load flow approach. The method is developed in the phase domain to effectively deal with unbalanced network conditions, while it can also handle distributed generation (DG) units of any type without requiring equivalent models. By utilizing the line series parameters and synchronized or unsynchronized voltage and current phasor measurements taken from the sources, the method reliably identifies the most probable faulty sections. With the aid of an index, the exact faulty section among the multiple candidates is determined. Extensive simulation studies for the IEEE 123-bus test feeder demonstrate that the proposed method accurately estimates the fault position under numerous short-circuit conditions with varying pre-fault system loading conditions, fault resistances, and measurement errors. The proposed method is promising for practical applications due to the limited number of required measurement devices as well as the short computation time.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.