Victor Saldanha Carvalho , Francisco Manuel Barrales , Luiz Henrique Fasolin , Juliane Viganó , Julian Martínez
{"title":"利用超临界流体吸附法浓缩橙皮油中的芳樟醇和α-松油醇","authors":"Victor Saldanha Carvalho , Francisco Manuel Barrales , Luiz Henrique Fasolin , Juliane Viganó , Julian Martínez","doi":"10.1016/j.supflu.2024.106354","DOIUrl":null,"url":null,"abstract":"<div><p>The concentration of oxygenated monoterpenes (oxyterpenes) in orange peel oil by supercritical fluid adsorption (SFA) was investigated varying pressure (10–24 MPa) and temperature (40–60 ºC) and using silica aerogels as adsorbent. Dynamic solubility experiments were conducted to obtain the solubility of the monoterpenes in supercritical CO<sub>2</sub>, revealing that it increases with pressure regardless of temperature. For SFA, 10 MPa and 60 ºC was the most appropriate condition to concentrate oxyterpenes, leading to the lowest solubility of oxyterpenes and highlighting the advantage of lower densities for SFA’s selectivity. Furthermore, this condition yielded the highest concentration factors for oxyterpenes (4.3 for linalool and 6.5 for α-terpineol) within the 80–90 min interval. These findings contribute with valuable insights to SFA processes to concentrate oxyterpenes from orange peel oil, which has the potential to enhance the market value and functionality of this important product from citrus industries.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106354"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration of the oxyterpenes linalool and α-terpineol in orange peel oil by supercritical fluid adsorption\",\"authors\":\"Victor Saldanha Carvalho , Francisco Manuel Barrales , Luiz Henrique Fasolin , Juliane Viganó , Julian Martínez\",\"doi\":\"10.1016/j.supflu.2024.106354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The concentration of oxygenated monoterpenes (oxyterpenes) in orange peel oil by supercritical fluid adsorption (SFA) was investigated varying pressure (10–24 MPa) and temperature (40–60 ºC) and using silica aerogels as adsorbent. Dynamic solubility experiments were conducted to obtain the solubility of the monoterpenes in supercritical CO<sub>2</sub>, revealing that it increases with pressure regardless of temperature. For SFA, 10 MPa and 60 ºC was the most appropriate condition to concentrate oxyterpenes, leading to the lowest solubility of oxyterpenes and highlighting the advantage of lower densities for SFA’s selectivity. Furthermore, this condition yielded the highest concentration factors for oxyterpenes (4.3 for linalool and 6.5 for α-terpineol) within the 80–90 min interval. These findings contribute with valuable insights to SFA processes to concentrate oxyterpenes from orange peel oil, which has the potential to enhance the market value and functionality of this important product from citrus industries.</p></div>\",\"PeriodicalId\":17078,\"journal\":{\"name\":\"Journal of Supercritical Fluids\",\"volume\":\"213 \",\"pages\":\"Article 106354\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercritical Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089684462400189X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089684462400189X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Concentration of the oxyterpenes linalool and α-terpineol in orange peel oil by supercritical fluid adsorption
The concentration of oxygenated monoterpenes (oxyterpenes) in orange peel oil by supercritical fluid adsorption (SFA) was investigated varying pressure (10–24 MPa) and temperature (40–60 ºC) and using silica aerogels as adsorbent. Dynamic solubility experiments were conducted to obtain the solubility of the monoterpenes in supercritical CO2, revealing that it increases with pressure regardless of temperature. For SFA, 10 MPa and 60 ºC was the most appropriate condition to concentrate oxyterpenes, leading to the lowest solubility of oxyterpenes and highlighting the advantage of lower densities for SFA’s selectivity. Furthermore, this condition yielded the highest concentration factors for oxyterpenes (4.3 for linalool and 6.5 for α-terpineol) within the 80–90 min interval. These findings contribute with valuable insights to SFA processes to concentrate oxyterpenes from orange peel oil, which has the potential to enhance the market value and functionality of this important product from citrus industries.
期刊介绍:
The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics.
Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.