{"title":"小鼠脑组织中脂类的微米级分辨率质谱成像扩展策略","authors":"Yik Ling Winnie Hung, Chengyi Xie, Jianing Wang, Xin Diao, Ruxin Li, Xiaoxiao Wang, Shulan Qiu, Jiacheng Fang, Zongwei Cai","doi":"10.31635/ccschem.024.202404002","DOIUrl":null,"url":null,"abstract":"<p>A novel method for enhanced resolution, termed expansion mass spectrometry imaging, has been developed for lipid mass spectrometry imaging, utilizing existing commercially available mass spectrometers without necessitating modifications. This approach involves embedding tissue sections in a swellable polyelectrolyte gel, with the target biomolecules indirectly anchored to the gel network. By employing matrix-assisted laser desorption ionization mass spectrometry imaging, the method has realized an enhanced spatial resolution that surpasses the conventional resolution limits of commercial instruments by approximately 4.5 fold. This enhancement permits the detailed visualization of intricate structures within the mouse brain at a subcellular level, with a lateral resolution nearing 1 μm. As a physical technique for achieving resolution beyond standard capabilities, this readily adaptable approach presents a powerful tool for high-definition imaging in biological research.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"26 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expansion Strategy-Driven Micron-Level Resolution Mass Spectrometry Imaging of Lipids in Mouse Brain Tissue\",\"authors\":\"Yik Ling Winnie Hung, Chengyi Xie, Jianing Wang, Xin Diao, Ruxin Li, Xiaoxiao Wang, Shulan Qiu, Jiacheng Fang, Zongwei Cai\",\"doi\":\"10.31635/ccschem.024.202404002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel method for enhanced resolution, termed expansion mass spectrometry imaging, has been developed for lipid mass spectrometry imaging, utilizing existing commercially available mass spectrometers without necessitating modifications. This approach involves embedding tissue sections in a swellable polyelectrolyte gel, with the target biomolecules indirectly anchored to the gel network. By employing matrix-assisted laser desorption ionization mass spectrometry imaging, the method has realized an enhanced spatial resolution that surpasses the conventional resolution limits of commercial instruments by approximately 4.5 fold. This enhancement permits the detailed visualization of intricate structures within the mouse brain at a subcellular level, with a lateral resolution nearing 1 μm. As a physical technique for achieving resolution beyond standard capabilities, this readily adaptable approach presents a powerful tool for high-definition imaging in biological research.</p>\",\"PeriodicalId\":9810,\"journal\":{\"name\":\"CCS Chemistry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CCS Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31635/ccschem.024.202404002\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCS Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31635/ccschem.024.202404002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Expansion Strategy-Driven Micron-Level Resolution Mass Spectrometry Imaging of Lipids in Mouse Brain Tissue
A novel method for enhanced resolution, termed expansion mass spectrometry imaging, has been developed for lipid mass spectrometry imaging, utilizing existing commercially available mass spectrometers without necessitating modifications. This approach involves embedding tissue sections in a swellable polyelectrolyte gel, with the target biomolecules indirectly anchored to the gel network. By employing matrix-assisted laser desorption ionization mass spectrometry imaging, the method has realized an enhanced spatial resolution that surpasses the conventional resolution limits of commercial instruments by approximately 4.5 fold. This enhancement permits the detailed visualization of intricate structures within the mouse brain at a subcellular level, with a lateral resolution nearing 1 μm. As a physical technique for achieving resolution beyond standard capabilities, this readily adaptable approach presents a powerful tool for high-definition imaging in biological research.
期刊介绍:
CCS Chemistry, the flagship publication of the Chinese Chemical Society, stands as a leading international chemistry journal based in China. With a commitment to global outreach in both contributions and readership, the journal operates on a fully Open Access model, eliminating subscription fees for contributing authors. Issued monthly, all articles are published online promptly upon reaching final publishable form. Additionally, authors have the option to expedite the posting process through Immediate Online Accepted Article posting, making a PDF of their accepted article available online upon journal acceptance.