Thapelo Ramalepe, Saumik Samanta, Ryan Cloete, Thomas J. Ryan-Keogh, Alakendra N. Roychoudhury
{"title":"冬季夹带驱动南大洋混合层的锰供应","authors":"Thapelo Ramalepe, Saumik Samanta, Ryan Cloete, Thomas J. Ryan-Keogh, Alakendra N. Roychoudhury","doi":"10.1002/lno.12634","DOIUrl":null,"url":null,"abstract":"<p>Despite the subnanomolar dissolved manganese concentrations that can co-limit Southern Ocean primary production, their physical supply mechanisms during winter, for biological consumption in spring and summer have not yet been explored. During austral winter and spring 2019, two cruises were conducted in the Atlantic sector of the Southern Ocean, to determine the distribution and surface water supply mechanisms of dissolved manganese in the upper water column. The supply mechanisms were used to calculate the total flux of dissolved manganese to productive surface waters and were compared to biological consumption estimates. Mean dissolved manganese concentrations in the upper water column (< 500 m) during winter and spring were comparably low (≤ 0.34 nmol kg<sup>−1</sup>; <i>p</i> > 0.05), with seasonal mixed layer reservoir sizes averaging 65.21 ± 12.93 and 21.64 ± 19.32 <i>μ</i>mol m<sup>−2</sup>, respectively. Winter entrainment contributed 89.33–99.99% (average 97.26% ± 5.28%) of the total dissolved manganese flux, while diapycnal diffusion contributed 0.52–10.58% (average 4.92% ± 5.14%), was identified as the dominant mechanisms for transporting dissolved manganese into the mixed layer in the subantarctic zone, polar frontal zone, and antarctic zone. Here, the winter physical supply rates were higher than the estimated consumption rates during spring, meeting phytoplankton biological demands. Whereas in the subtropical zone, the supply rates were lower than the consumption rates, indicating the presence of additional supply mechanisms such as coastal upwelling, which may help to meet the biological demands in this region.</p>","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lno.12634","citationCount":"0","resultStr":"{\"title\":\"Winter entrainment drives the mixed layer supply of manganese in the Southern Ocean\",\"authors\":\"Thapelo Ramalepe, Saumik Samanta, Ryan Cloete, Thomas J. Ryan-Keogh, Alakendra N. Roychoudhury\",\"doi\":\"10.1002/lno.12634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite the subnanomolar dissolved manganese concentrations that can co-limit Southern Ocean primary production, their physical supply mechanisms during winter, for biological consumption in spring and summer have not yet been explored. During austral winter and spring 2019, two cruises were conducted in the Atlantic sector of the Southern Ocean, to determine the distribution and surface water supply mechanisms of dissolved manganese in the upper water column. The supply mechanisms were used to calculate the total flux of dissolved manganese to productive surface waters and were compared to biological consumption estimates. Mean dissolved manganese concentrations in the upper water column (< 500 m) during winter and spring were comparably low (≤ 0.34 nmol kg<sup>−1</sup>; <i>p</i> > 0.05), with seasonal mixed layer reservoir sizes averaging 65.21 ± 12.93 and 21.64 ± 19.32 <i>μ</i>mol m<sup>−2</sup>, respectively. Winter entrainment contributed 89.33–99.99% (average 97.26% ± 5.28%) of the total dissolved manganese flux, while diapycnal diffusion contributed 0.52–10.58% (average 4.92% ± 5.14%), was identified as the dominant mechanisms for transporting dissolved manganese into the mixed layer in the subantarctic zone, polar frontal zone, and antarctic zone. Here, the winter physical supply rates were higher than the estimated consumption rates during spring, meeting phytoplankton biological demands. Whereas in the subtropical zone, the supply rates were lower than the consumption rates, indicating the presence of additional supply mechanisms such as coastal upwelling, which may help to meet the biological demands in this region.</p>\",\"PeriodicalId\":18143,\"journal\":{\"name\":\"Limnology and Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lno.12634\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lno.12634\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lno.12634","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Winter entrainment drives the mixed layer supply of manganese in the Southern Ocean
Despite the subnanomolar dissolved manganese concentrations that can co-limit Southern Ocean primary production, their physical supply mechanisms during winter, for biological consumption in spring and summer have not yet been explored. During austral winter and spring 2019, two cruises were conducted in the Atlantic sector of the Southern Ocean, to determine the distribution and surface water supply mechanisms of dissolved manganese in the upper water column. The supply mechanisms were used to calculate the total flux of dissolved manganese to productive surface waters and were compared to biological consumption estimates. Mean dissolved manganese concentrations in the upper water column (< 500 m) during winter and spring were comparably low (≤ 0.34 nmol kg−1; p > 0.05), with seasonal mixed layer reservoir sizes averaging 65.21 ± 12.93 and 21.64 ± 19.32 μmol m−2, respectively. Winter entrainment contributed 89.33–99.99% (average 97.26% ± 5.28%) of the total dissolved manganese flux, while diapycnal diffusion contributed 0.52–10.58% (average 4.92% ± 5.14%), was identified as the dominant mechanisms for transporting dissolved manganese into the mixed layer in the subantarctic zone, polar frontal zone, and antarctic zone. Here, the winter physical supply rates were higher than the estimated consumption rates during spring, meeting phytoplankton biological demands. Whereas in the subtropical zone, the supply rates were lower than the consumption rates, indicating the presence of additional supply mechanisms such as coastal upwelling, which may help to meet the biological demands in this region.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.