{"title":"人类活动对地表水中多环芳烃的影响:来自 COVID-19 封锁的证据","authors":"","doi":"10.1016/j.watres.2024.122143","DOIUrl":null,"url":null,"abstract":"<div><p>The lockdown restrictions against coronavirus disease 2019 (COVID-19) have led to unprecedented reductions in global anthropogenic activities. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic combustion-induced pollutants, but the influence of anthropogenic responses to COVID-19 on PAH contamination remains largely unknown. Here we quantified the impacts of lockdown restrictions on 16PAH pollution based on the data in concentrations dissolved in the water phase and absorbed on the suspended particulate matter (SPM) in the Elbe River from 2015 to 2021 and determined the changes in source contributions classified by individual years and stations. Results show that the annual average PAH concentrations in water and SPM were determined as 0.055 <span><math><mi>μ</mi></math></span>g·L<sup>-1</sup> and 3.77 mg·kg<sup>-1</sup> from 2015 to 2021, respectively. Pronounced declines in PAH on SPM (up to -18 %) were observed during the three lockdowns in Germany from 2020 to 2021. However, dramatic rebounds of anthropogenic activities during the removal of the lockdown led to increases (up to 29 %) in ∑<sub>16</sub>PAH concentrations compared to the same period in previous years. Through the source apportionment method, vehicle and coal emissions were the two most predominant sources of PAHs in the river. Vehicle contribution decreased during the lockdown, while coal emissions increased by 5 %. Health risks for three age groups were assessed as potential low risk and decreased by 18 % from 1.54 × 10<sup>–4</sup> in 2015 to 1.27 × 10<sup>–4</sup> in 2019, and rebounded to 1.40 × 10<sup>–4</sup> in 2020–2021. The findings of this study highlight the strong consistency between PAH concentrations and anthropogenic intensity, implying that source control from improved cleaner production is an effective pathway for mitigating PAH contamination in the aquatic environment.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anthropogenic impacts on polycyclic aromatic hydrocarbons in surface water: Evidence from the COVID-19 lockdown\",\"authors\":\"\",\"doi\":\"10.1016/j.watres.2024.122143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The lockdown restrictions against coronavirus disease 2019 (COVID-19) have led to unprecedented reductions in global anthropogenic activities. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic combustion-induced pollutants, but the influence of anthropogenic responses to COVID-19 on PAH contamination remains largely unknown. Here we quantified the impacts of lockdown restrictions on 16PAH pollution based on the data in concentrations dissolved in the water phase and absorbed on the suspended particulate matter (SPM) in the Elbe River from 2015 to 2021 and determined the changes in source contributions classified by individual years and stations. Results show that the annual average PAH concentrations in water and SPM were determined as 0.055 <span><math><mi>μ</mi></math></span>g·L<sup>-1</sup> and 3.77 mg·kg<sup>-1</sup> from 2015 to 2021, respectively. Pronounced declines in PAH on SPM (up to -18 %) were observed during the three lockdowns in Germany from 2020 to 2021. However, dramatic rebounds of anthropogenic activities during the removal of the lockdown led to increases (up to 29 %) in ∑<sub>16</sub>PAH concentrations compared to the same period in previous years. Through the source apportionment method, vehicle and coal emissions were the two most predominant sources of PAHs in the river. Vehicle contribution decreased during the lockdown, while coal emissions increased by 5 %. Health risks for three age groups were assessed as potential low risk and decreased by 18 % from 1.54 × 10<sup>–4</sup> in 2015 to 1.27 × 10<sup>–4</sup> in 2019, and rebounded to 1.40 × 10<sup>–4</sup> in 2020–2021. The findings of this study highlight the strong consistency between PAH concentrations and anthropogenic intensity, implying that source control from improved cleaner production is an effective pathway for mitigating PAH contamination in the aquatic environment.</p></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004313542401042X\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004313542401042X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Anthropogenic impacts on polycyclic aromatic hydrocarbons in surface water: Evidence from the COVID-19 lockdown
The lockdown restrictions against coronavirus disease 2019 (COVID-19) have led to unprecedented reductions in global anthropogenic activities. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic combustion-induced pollutants, but the influence of anthropogenic responses to COVID-19 on PAH contamination remains largely unknown. Here we quantified the impacts of lockdown restrictions on 16PAH pollution based on the data in concentrations dissolved in the water phase and absorbed on the suspended particulate matter (SPM) in the Elbe River from 2015 to 2021 and determined the changes in source contributions classified by individual years and stations. Results show that the annual average PAH concentrations in water and SPM were determined as 0.055 g·L-1 and 3.77 mg·kg-1 from 2015 to 2021, respectively. Pronounced declines in PAH on SPM (up to -18 %) were observed during the three lockdowns in Germany from 2020 to 2021. However, dramatic rebounds of anthropogenic activities during the removal of the lockdown led to increases (up to 29 %) in ∑16PAH concentrations compared to the same period in previous years. Through the source apportionment method, vehicle and coal emissions were the two most predominant sources of PAHs in the river. Vehicle contribution decreased during the lockdown, while coal emissions increased by 5 %. Health risks for three age groups were assessed as potential low risk and decreased by 18 % from 1.54 × 10–4 in 2015 to 1.27 × 10–4 in 2019, and rebounded to 1.40 × 10–4 in 2020–2021. The findings of this study highlight the strong consistency between PAH concentrations and anthropogenic intensity, implying that source control from improved cleaner production is an effective pathway for mitigating PAH contamination in the aquatic environment.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.