{"title":"非线性纳米天线中的非互易散射和单向隐形","authors":"Heedong Goh, Alex Krasnok, Andrea Alù","doi":"10.1515/nanoph-2024-0212","DOIUrl":null,"url":null,"abstract":"Reciprocal scatterers necessarily extinguish the same amount of incoming power when excited from opposite directions. This property implies that it is not possible to realize scatterers that are transparent when excited from one direction but that scatter and absorb light for the opposite excitation, limiting opportunities in the context of asymmetric imaging and nanophotonic circuits. This reciprocity constraint may be overcome with an external bias that breaks time-reversal symmetry, posing however challenges in terms of practical implementations and integration. Here, we explore the use of tailored nonlinearities combined with geometric asymmetries in suitably tailored resonant nanoantennas. We demonstrate that, under suitable design conditions, a nonlinear scatterer can be cloaked for one excitation direction, yet strongly scatters when excited at the same frequency and intensity from the opposite direction. This nonreciprocal scattering phenomenon opens opportunities for nonlinear nanophotonics, asymmetric imaging and visibility, all-optical signal processing and directional sensing.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"40 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonreciprocal scattering and unidirectional cloaking in nonlinear nanoantennas\",\"authors\":\"Heedong Goh, Alex Krasnok, Andrea Alù\",\"doi\":\"10.1515/nanoph-2024-0212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reciprocal scatterers necessarily extinguish the same amount of incoming power when excited from opposite directions. This property implies that it is not possible to realize scatterers that are transparent when excited from one direction but that scatter and absorb light for the opposite excitation, limiting opportunities in the context of asymmetric imaging and nanophotonic circuits. This reciprocity constraint may be overcome with an external bias that breaks time-reversal symmetry, posing however challenges in terms of practical implementations and integration. Here, we explore the use of tailored nonlinearities combined with geometric asymmetries in suitably tailored resonant nanoantennas. We demonstrate that, under suitable design conditions, a nonlinear scatterer can be cloaked for one excitation direction, yet strongly scatters when excited at the same frequency and intensity from the opposite direction. This nonreciprocal scattering phenomenon opens opportunities for nonlinear nanophotonics, asymmetric imaging and visibility, all-optical signal processing and directional sensing.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0212\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0212","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nonreciprocal scattering and unidirectional cloaking in nonlinear nanoantennas
Reciprocal scatterers necessarily extinguish the same amount of incoming power when excited from opposite directions. This property implies that it is not possible to realize scatterers that are transparent when excited from one direction but that scatter and absorb light for the opposite excitation, limiting opportunities in the context of asymmetric imaging and nanophotonic circuits. This reciprocity constraint may be overcome with an external bias that breaks time-reversal symmetry, posing however challenges in terms of practical implementations and integration. Here, we explore the use of tailored nonlinearities combined with geometric asymmetries in suitably tailored resonant nanoantennas. We demonstrate that, under suitable design conditions, a nonlinear scatterer can be cloaked for one excitation direction, yet strongly scatters when excited at the same frequency and intensity from the opposite direction. This nonreciprocal scattering phenomenon opens opportunities for nonlinear nanophotonics, asymmetric imaging and visibility, all-optical signal processing and directional sensing.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.