秋绵虫对 Cry1F 玉米实际抗性的逆转:美国东南部 Bt 作物抗性转敏感性的案例报告

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY
Tiago Silva, Gregory A. Sword, Andie Miller, Jawwad A. Qureshi, Graham P. Head, Dawson D. Kerns, Juan Luis Jurat-Fuentes, James Villegas, Tyler B. Towles, Xinzhi Ni, Francis P. F. Reay-Jones, Daniel Carrillo, Donald R. Cook, Chris Daves, Michael J. Stout, Ben Thrash, Silvana V. Paula-Moraes, Shucong Lin, Bhavana Patla, Ying Niu, Caroline I. R. Sakuno, Fangneng Huang
{"title":"秋绵虫对 Cry1F 玉米实际抗性的逆转:美国东南部 Bt 作物抗性转敏感性的案例报告","authors":"Tiago Silva, Gregory A. Sword, Andie Miller, Jawwad A. Qureshi, Graham P. Head, Dawson D. Kerns, Juan Luis Jurat-Fuentes, James Villegas, Tyler B. Towles, Xinzhi Ni, Francis P. F. Reay-Jones, Daniel Carrillo, Donald R. Cook, Chris Daves, Michael J. Stout, Ben Thrash, Silvana V. Paula-Moraes, Shucong Lin, Bhavana Patla, Ying Niu, Caroline I. R. Sakuno, Fangneng Huang","doi":"10.1007/s10340-024-01804-y","DOIUrl":null,"url":null,"abstract":"<p>The fall armyworm, <i>Spodoptera frugiperda</i>, is a polyphagous pest in the Americas and a target of Bt crops. A study from 2011-2013 demonstrated practical resistance of <i>S. frugiperda</i> to Cry1F maize in the southeastern coastal region of the U.S. In this study, diet-overlay and leaf tissue bioassays were conducted to determine the susceptibility to four common Bt proteins in maize (Cry1F, Cry1A.105, Cry2Ab2, and Vip3Aa) in 23 <i>S. frugiperda</i> populations collected during 2021-2022 from seven southern U.S. states, including nine populations from the southeastern coastal region. In the diet-overlay bioassays with Cry1F, 22 populations were equally or more susceptible than a susceptible reference, with a single population showing an increased susceptibility ratio (LC<sub>50</sub> of field population/LC<sub>50</sub> of the susceptible strain) of 1.97. Susceptibility ratios of the 23 populations ranged from &lt;0.15 to 4.67 for Cry1A.105 and &lt;0.12 to 5.04 for Vip3Aa. Three populations exhibited an LC<sub>50</sub> &gt;tenfold greater than the susceptible strain to Cry2Ab2. Altogether, the study did not provide evidence of practical resistance in <i>S. frugiperda</i> to the four Bt proteins. Instead, the results show that the recently collected populations were susceptible to Cry1F, Cry1A.105, and Vip3Aa. The Bt susceptibility was consistent across geographical locations and host plants. Results from the leaf tissue assays confirmed the findings of the diet-overlay bioassays. The reversed Cry1F susceptibility in <i>S. frugiperda</i> identified in this study represents the first case of documented practical resistance reverting to susceptible status in Bt crop-insect systems and thus has important implications for resistance management.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"29 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversal of practical resistance in fall armyworm to Cry1F maize: a case report on the resistance to susceptibility in Bt crops from the southeastern USA\",\"authors\":\"Tiago Silva, Gregory A. Sword, Andie Miller, Jawwad A. Qureshi, Graham P. Head, Dawson D. Kerns, Juan Luis Jurat-Fuentes, James Villegas, Tyler B. Towles, Xinzhi Ni, Francis P. F. Reay-Jones, Daniel Carrillo, Donald R. Cook, Chris Daves, Michael J. Stout, Ben Thrash, Silvana V. Paula-Moraes, Shucong Lin, Bhavana Patla, Ying Niu, Caroline I. R. Sakuno, Fangneng Huang\",\"doi\":\"10.1007/s10340-024-01804-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fall armyworm, <i>Spodoptera frugiperda</i>, is a polyphagous pest in the Americas and a target of Bt crops. A study from 2011-2013 demonstrated practical resistance of <i>S. frugiperda</i> to Cry1F maize in the southeastern coastal region of the U.S. In this study, diet-overlay and leaf tissue bioassays were conducted to determine the susceptibility to four common Bt proteins in maize (Cry1F, Cry1A.105, Cry2Ab2, and Vip3Aa) in 23 <i>S. frugiperda</i> populations collected during 2021-2022 from seven southern U.S. states, including nine populations from the southeastern coastal region. In the diet-overlay bioassays with Cry1F, 22 populations were equally or more susceptible than a susceptible reference, with a single population showing an increased susceptibility ratio (LC<sub>50</sub> of field population/LC<sub>50</sub> of the susceptible strain) of 1.97. Susceptibility ratios of the 23 populations ranged from &lt;0.15 to 4.67 for Cry1A.105 and &lt;0.12 to 5.04 for Vip3Aa. Three populations exhibited an LC<sub>50</sub> &gt;tenfold greater than the susceptible strain to Cry2Ab2. Altogether, the study did not provide evidence of practical resistance in <i>S. frugiperda</i> to the four Bt proteins. Instead, the results show that the recently collected populations were susceptible to Cry1F, Cry1A.105, and Vip3Aa. The Bt susceptibility was consistent across geographical locations and host plants. Results from the leaf tissue assays confirmed the findings of the diet-overlay bioassays. The reversed Cry1F susceptibility in <i>S. frugiperda</i> identified in this study represents the first case of documented practical resistance reverting to susceptible status in Bt crop-insect systems and thus has important implications for resistance management.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01804-y\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01804-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

秋虫(Spodoptera frugiperda)是美洲的一种多食性害虫,也是 Bt 作物的目标害虫。2011-2013 年的一项研究表明,在美国东南部沿海地区,镰刀虫对 Cry1F 玉米具有实际抗性。在这项研究中,进行了饮食覆盖和叶组织生物测定,以确定 23 种镰刀虫对玉米中四种常见 Bt 蛋白质(Cry1F、Cry1A.105、Cry2Ab2 和 Vip3Aa)的敏感性。在用 Cry1F 进行的饮食覆盖生物测定中,22 个种群的易感性与易感参照物相同或更高,其中一个种群的易感性比值(田间种群的半致死浓度/易感菌株的半致死浓度)为 1.97。23 个群体对 Cry1A.105 和 Vip3Aa 的易感性比率分别为 0.15 至 4.67 和 0.12 至 5.04。三个种群对 Cry2Ab2 的半数致死浓度是易感株系的十倍。总之,这项研究没有提供证据表明节节菜对四种 Bt 蛋白具有实际抗性。相反,研究结果表明,最近采集的种群对 Cry1F、Cry1A.105 和 Vip3Aa 易感。不同地理位置和寄主植物对 Bt 的敏感性是一致的。叶组织测定的结果证实了饮食覆盖生物测定的结果。本研究发现的 S. frugiperda 对 Cry1F 的易感性逆转是 Bt 作物-昆虫系统中第一个有记录的实际抗性逆转为易感状态的案例,因此对抗性管理具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reversal of practical resistance in fall armyworm to Cry1F maize: a case report on the resistance to susceptibility in Bt crops from the southeastern USA

Reversal of practical resistance in fall armyworm to Cry1F maize: a case report on the resistance to susceptibility in Bt crops from the southeastern USA

The fall armyworm, Spodoptera frugiperda, is a polyphagous pest in the Americas and a target of Bt crops. A study from 2011-2013 demonstrated practical resistance of S. frugiperda to Cry1F maize in the southeastern coastal region of the U.S. In this study, diet-overlay and leaf tissue bioassays were conducted to determine the susceptibility to four common Bt proteins in maize (Cry1F, Cry1A.105, Cry2Ab2, and Vip3Aa) in 23 S. frugiperda populations collected during 2021-2022 from seven southern U.S. states, including nine populations from the southeastern coastal region. In the diet-overlay bioassays with Cry1F, 22 populations were equally or more susceptible than a susceptible reference, with a single population showing an increased susceptibility ratio (LC50 of field population/LC50 of the susceptible strain) of 1.97. Susceptibility ratios of the 23 populations ranged from <0.15 to 4.67 for Cry1A.105 and <0.12 to 5.04 for Vip3Aa. Three populations exhibited an LC50 >tenfold greater than the susceptible strain to Cry2Ab2. Altogether, the study did not provide evidence of practical resistance in S. frugiperda to the four Bt proteins. Instead, the results show that the recently collected populations were susceptible to Cry1F, Cry1A.105, and Vip3Aa. The Bt susceptibility was consistent across geographical locations and host plants. Results from the leaf tissue assays confirmed the findings of the diet-overlay bioassays. The reversed Cry1F susceptibility in S. frugiperda identified in this study represents the first case of documented practical resistance reverting to susceptible status in Bt crop-insect systems and thus has important implications for resistance management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信