{"title":"燃烧器中的热声不稳定性","authors":"Aimee S. Morgans, Dong Yang","doi":"10.1146/annurev-fluid-121021-032828","DOIUrl":null,"url":null,"abstract":"Thermoacoustic instability is a flow instability that arises due to a two-way coupling between acoustic waves and unsteady heat release rate. It can cause damaging, large-amplitude oscillations in the combustors of gas turbines, aeroengines, rocket engines, etc., and the transition to decarbonized fuels is likely to introduce new thermoacoustic instability problems. With a focus on practical thermoacoustic instability problems, especially in gas turbine combustors, this review presents the common types of combustor and burner geometry used. It discusses the relevant flow physics underpinning their acoustic and unsteady flame behaviors, including how these differ across combustor and burner types. Computational tools for predicting thermoacoustic instability can be categorized into direct computational approaches, in which a single flow simulation resolves all of the most important length scales and timescales, and coupled/hybrid approaches, which couple separate computational treatments for the acoustic waves and flame, exploiting the large disparity in length scales associated with these. Examples of successful computational prediction of thermoacoustic instability in realistic combustors are given, along with outlooks for future research in this area.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"66 1","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoacoustic Instability in Combustors\",\"authors\":\"Aimee S. Morgans, Dong Yang\",\"doi\":\"10.1146/annurev-fluid-121021-032828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermoacoustic instability is a flow instability that arises due to a two-way coupling between acoustic waves and unsteady heat release rate. It can cause damaging, large-amplitude oscillations in the combustors of gas turbines, aeroengines, rocket engines, etc., and the transition to decarbonized fuels is likely to introduce new thermoacoustic instability problems. With a focus on practical thermoacoustic instability problems, especially in gas turbine combustors, this review presents the common types of combustor and burner geometry used. It discusses the relevant flow physics underpinning their acoustic and unsteady flame behaviors, including how these differ across combustor and burner types. Computational tools for predicting thermoacoustic instability can be categorized into direct computational approaches, in which a single flow simulation resolves all of the most important length scales and timescales, and coupled/hybrid approaches, which couple separate computational treatments for the acoustic waves and flame, exploiting the large disparity in length scales associated with these. Examples of successful computational prediction of thermoacoustic instability in realistic combustors are given, along with outlooks for future research in this area.\",\"PeriodicalId\":50754,\"journal\":{\"name\":\"Annual Review of Fluid Mechanics\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":25.4000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-fluid-121021-032828\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-121021-032828","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Thermoacoustic instability is a flow instability that arises due to a two-way coupling between acoustic waves and unsteady heat release rate. It can cause damaging, large-amplitude oscillations in the combustors of gas turbines, aeroengines, rocket engines, etc., and the transition to decarbonized fuels is likely to introduce new thermoacoustic instability problems. With a focus on practical thermoacoustic instability problems, especially in gas turbine combustors, this review presents the common types of combustor and burner geometry used. It discusses the relevant flow physics underpinning their acoustic and unsteady flame behaviors, including how these differ across combustor and burner types. Computational tools for predicting thermoacoustic instability can be categorized into direct computational approaches, in which a single flow simulation resolves all of the most important length scales and timescales, and coupled/hybrid approaches, which couple separate computational treatments for the acoustic waves and flame, exploiting the large disparity in length scales associated with these. Examples of successful computational prediction of thermoacoustic instability in realistic combustors are given, along with outlooks for future research in this area.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.