{"title":"扩展一类方位错觉的计算模型。","authors":"Dejan Todorović","doi":"10.1016/j.visres.2024.108459","DOIUrl":null,"url":null,"abstract":"<div><p>Polarity-dependent orientation illusions constitute a class of illusions in which the impression of orientation does not depend only on geometrical relations between its elements, but also on the relations between their luminances. Several examples of such figures are presented in the paper. Todorović (2021a) presented a simple computational model of such phenomena. Simulations of the model indicated that a common feature of the neural basis of these illusions is the presence of certain neural structures called ‘oblique clusters’. A limitation of the model was that it used a restricted set of parameters. In this paper a generalization of the model is introduced involving types of receptive fields, their orientation sensitivity and their size or spatial frequency tuning. The simulations of the new model indicated that oblique clusters were present in the reaction patterns under a much wider set of conditions, though not all. The original hypothesis that oblique clusters constituted the neural foundations of impressions of tilt in this class of illusions was vindicated.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"223 ","pages":"Article 108459"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extension of a computational model of a class of orientation illusions\",\"authors\":\"Dejan Todorović\",\"doi\":\"10.1016/j.visres.2024.108459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polarity-dependent orientation illusions constitute a class of illusions in which the impression of orientation does not depend only on geometrical relations between its elements, but also on the relations between their luminances. Several examples of such figures are presented in the paper. Todorović (2021a) presented a simple computational model of such phenomena. Simulations of the model indicated that a common feature of the neural basis of these illusions is the presence of certain neural structures called ‘oblique clusters’. A limitation of the model was that it used a restricted set of parameters. In this paper a generalization of the model is introduced involving types of receptive fields, their orientation sensitivity and their size or spatial frequency tuning. The simulations of the new model indicated that oblique clusters were present in the reaction patterns under a much wider set of conditions, though not all. The original hypothesis that oblique clusters constituted the neural foundations of impressions of tilt in this class of illusions was vindicated.</p></div>\",\"PeriodicalId\":23670,\"journal\":{\"name\":\"Vision Research\",\"volume\":\"223 \",\"pages\":\"Article 108459\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042698924001032\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698924001032","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Extension of a computational model of a class of orientation illusions
Polarity-dependent orientation illusions constitute a class of illusions in which the impression of orientation does not depend only on geometrical relations between its elements, but also on the relations between their luminances. Several examples of such figures are presented in the paper. Todorović (2021a) presented a simple computational model of such phenomena. Simulations of the model indicated that a common feature of the neural basis of these illusions is the presence of certain neural structures called ‘oblique clusters’. A limitation of the model was that it used a restricted set of parameters. In this paper a generalization of the model is introduced involving types of receptive fields, their orientation sensitivity and their size or spatial frequency tuning. The simulations of the new model indicated that oblique clusters were present in the reaction patterns under a much wider set of conditions, though not all. The original hypothesis that oblique clusters constituted the neural foundations of impressions of tilt in this class of illusions was vindicated.
期刊介绍:
Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.