Julian D Down, Milton R Cornwall-Brady, Wei Huang, Martina Hurwitz, Scott R Floyd, Omer H Yilmaz
{"title":"选择最相关的小鼠品系,用于评估腿部屏蔽部分全身伽马辐照后辐射诱发的多组织损伤。","authors":"Julian D Down, Milton R Cornwall-Brady, Wei Huang, Martina Hurwitz, Scott R Floyd, Omer H Yilmaz","doi":"10.1667/RADE-24-00058.1","DOIUrl":null,"url":null,"abstract":"<p><p>Animal studies are needed that best simulate a large-scale, inhomogeneous body exposure after a radiological or nuclear incident and that provides a platform for future development of medical countermeasures. A partial-body irradiation (PBI) model using 137Cs gamma rays with hind limb (tibia) shielding was developed and assessed for the sequalae of radiation injuries to gastrointestinal tract, bone marrow (BM) and lung and among different genetic mouse strains (C57BL/6J, C57L/J, CBA/J and FVB/NJ). In this case, a marginal level of BM shielding (∼2%) provided adequate protection against lethality from infection and hemorrhage and enabled escalation of radiation doses with evaluation of both acute and delayed radiation syndromes. A steep radiation dose-dependent body weight loss was observed over the first 5 days attributed to enteritis with C57BL/6J mice appearing to be the most sensitive strain. Peripheral blood cell analysis revealed significant depression and recovery of leukocytes and platelets over the first month after PBI and were comparable among the four different mouse strains. Latent pulmonary injury was observed on micro-CT imaging at 4 months in C57L/J mice and confirmed histologically as severe pneumonitis that was lethal at 12 Gy. The lethality and radiological densitometry (HUs) dose responses were comparable to previous studies on C57L/J mice after total-body irradiation (TBI) and BM transplant rescue as well as after localized whole-thorax irradiation (WTI). Indeed, the lethal radiation doses and latency appeared similar for pneumonitis appearing in rhesus macaques after WTI or PBI as well as predicted for patients given systemic radiotherapy. In contrast, PBI treatment of C57BL/6 mice at a higher dose of 14 Gy had far longer survival times and developed extreme and debilitating pIeural effusions; an anomaly as similarly reported in previous thorax irradiation studies on this mouse strain. In summary, a radiation exposure model that delivers PBI to unanesthetized mice in a device that provides consistent shielding of the hind limb BM was developed for 137Cs gamma rays with physical characteristics and relevance to relatively high photon energies expected from the detonation of a nuclear device or accidental release of ionizing radiation. Standard strains such as C57BL/6J mice may be used reliably for early GI or hematological radiation syndromes while the C57L/J mouse strain stands out as the most appropriate for evaluating the delayed pulmonary effects of acute radiation exposure and recapitulating this disease in humans.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selecting the Most Relevant Mouse Strains for Evaluating Radiation-Induced Multiple Tissue Injury after Leg-Shielded Partial-Body Gamma Irradiation.\",\"authors\":\"Julian D Down, Milton R Cornwall-Brady, Wei Huang, Martina Hurwitz, Scott R Floyd, Omer H Yilmaz\",\"doi\":\"10.1667/RADE-24-00058.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Animal studies are needed that best simulate a large-scale, inhomogeneous body exposure after a radiological or nuclear incident and that provides a platform for future development of medical countermeasures. A partial-body irradiation (PBI) model using 137Cs gamma rays with hind limb (tibia) shielding was developed and assessed for the sequalae of radiation injuries to gastrointestinal tract, bone marrow (BM) and lung and among different genetic mouse strains (C57BL/6J, C57L/J, CBA/J and FVB/NJ). In this case, a marginal level of BM shielding (∼2%) provided adequate protection against lethality from infection and hemorrhage and enabled escalation of radiation doses with evaluation of both acute and delayed radiation syndromes. A steep radiation dose-dependent body weight loss was observed over the first 5 days attributed to enteritis with C57BL/6J mice appearing to be the most sensitive strain. Peripheral blood cell analysis revealed significant depression and recovery of leukocytes and platelets over the first month after PBI and were comparable among the four different mouse strains. Latent pulmonary injury was observed on micro-CT imaging at 4 months in C57L/J mice and confirmed histologically as severe pneumonitis that was lethal at 12 Gy. The lethality and radiological densitometry (HUs) dose responses were comparable to previous studies on C57L/J mice after total-body irradiation (TBI) and BM transplant rescue as well as after localized whole-thorax irradiation (WTI). Indeed, the lethal radiation doses and latency appeared similar for pneumonitis appearing in rhesus macaques after WTI or PBI as well as predicted for patients given systemic radiotherapy. In contrast, PBI treatment of C57BL/6 mice at a higher dose of 14 Gy had far longer survival times and developed extreme and debilitating pIeural effusions; an anomaly as similarly reported in previous thorax irradiation studies on this mouse strain. In summary, a radiation exposure model that delivers PBI to unanesthetized mice in a device that provides consistent shielding of the hind limb BM was developed for 137Cs gamma rays with physical characteristics and relevance to relatively high photon energies expected from the detonation of a nuclear device or accidental release of ionizing radiation. Standard strains such as C57BL/6J mice may be used reliably for early GI or hematological radiation syndromes while the C57L/J mouse strain stands out as the most appropriate for evaluating the delayed pulmonary effects of acute radiation exposure and recapitulating this disease in humans.</p>\",\"PeriodicalId\":20903,\"journal\":{\"name\":\"Radiation research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1667/RADE-24-00058.1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00058.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Selecting the Most Relevant Mouse Strains for Evaluating Radiation-Induced Multiple Tissue Injury after Leg-Shielded Partial-Body Gamma Irradiation.
Animal studies are needed that best simulate a large-scale, inhomogeneous body exposure after a radiological or nuclear incident and that provides a platform for future development of medical countermeasures. A partial-body irradiation (PBI) model using 137Cs gamma rays with hind limb (tibia) shielding was developed and assessed for the sequalae of radiation injuries to gastrointestinal tract, bone marrow (BM) and lung and among different genetic mouse strains (C57BL/6J, C57L/J, CBA/J and FVB/NJ). In this case, a marginal level of BM shielding (∼2%) provided adequate protection against lethality from infection and hemorrhage and enabled escalation of radiation doses with evaluation of both acute and delayed radiation syndromes. A steep radiation dose-dependent body weight loss was observed over the first 5 days attributed to enteritis with C57BL/6J mice appearing to be the most sensitive strain. Peripheral blood cell analysis revealed significant depression and recovery of leukocytes and platelets over the first month after PBI and were comparable among the four different mouse strains. Latent pulmonary injury was observed on micro-CT imaging at 4 months in C57L/J mice and confirmed histologically as severe pneumonitis that was lethal at 12 Gy. The lethality and radiological densitometry (HUs) dose responses were comparable to previous studies on C57L/J mice after total-body irradiation (TBI) and BM transplant rescue as well as after localized whole-thorax irradiation (WTI). Indeed, the lethal radiation doses and latency appeared similar for pneumonitis appearing in rhesus macaques after WTI or PBI as well as predicted for patients given systemic radiotherapy. In contrast, PBI treatment of C57BL/6 mice at a higher dose of 14 Gy had far longer survival times and developed extreme and debilitating pIeural effusions; an anomaly as similarly reported in previous thorax irradiation studies on this mouse strain. In summary, a radiation exposure model that delivers PBI to unanesthetized mice in a device that provides consistent shielding of the hind limb BM was developed for 137Cs gamma rays with physical characteristics and relevance to relatively high photon energies expected from the detonation of a nuclear device or accidental release of ionizing radiation. Standard strains such as C57BL/6J mice may be used reliably for early GI or hematological radiation syndromes while the C57L/J mouse strain stands out as the most appropriate for evaluating the delayed pulmonary effects of acute radiation exposure and recapitulating this disease in humans.
期刊介绍:
Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology
and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically
ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or
biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with
chemical agents contributing to the understanding of radiation effects.