{"title":"利用自监督学习在基于图的神经网络中进行自适应节点特征提取以诊断脑部疾病","authors":"","doi":"10.1016/j.neuroimage.2024.120750","DOIUrl":null,"url":null,"abstract":"<div><p>Electroencephalography (EEG) has demonstrated significant value in diagnosing brain diseases. In particular, brain networks have gained prominence as they offer additional valuable insights by establishing connections between EEG signal channels. While brain connections are typically delineated by channel signal similarity, there lacks a consistent and reliable strategy for ascertaining node characteristics. Conventional node features such as temporal and frequency domain properties of EEG signals prove inadequate for capturing the extensive EEG information. In our investigation, we introduce a novel adaptive method for extracting node features from EEG signals utilizing a distinctive task-induced self-supervised learning technique. By amalgamating these extracted node features with fundamental edge features constructed using Pearson correlation coefficients, we showed that the proposed approach can function as a plug-in module that can be integrated to many common GNN networks (e.g., GCN, GraphSAGE, GAT) as a replacement of node feature selections module. Comprehensive experiments are then conducted to demonstrate the consistently superior performance and high generality of the proposed method over other feature selection methods in various of brain disorder prediction tasks, such as depression, schizophrenia, and Parkinson’s disease. Furthermore, compared to other node features, our approach unveils profound spatial patterns through graph pooling and structural learning, shedding light on pivotal brain regions influencing various brain disorder prediction based on derived features.</p></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1053811924002477/pdfft?md5=219bec4ff624ee37047fc27229c630c8&pid=1-s2.0-S1053811924002477-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Adaptive node feature extraction in graph-based neural networks for brain diseases diagnosis using self-supervised learning\",\"authors\":\"\",\"doi\":\"10.1016/j.neuroimage.2024.120750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electroencephalography (EEG) has demonstrated significant value in diagnosing brain diseases. In particular, brain networks have gained prominence as they offer additional valuable insights by establishing connections between EEG signal channels. While brain connections are typically delineated by channel signal similarity, there lacks a consistent and reliable strategy for ascertaining node characteristics. Conventional node features such as temporal and frequency domain properties of EEG signals prove inadequate for capturing the extensive EEG information. In our investigation, we introduce a novel adaptive method for extracting node features from EEG signals utilizing a distinctive task-induced self-supervised learning technique. By amalgamating these extracted node features with fundamental edge features constructed using Pearson correlation coefficients, we showed that the proposed approach can function as a plug-in module that can be integrated to many common GNN networks (e.g., GCN, GraphSAGE, GAT) as a replacement of node feature selections module. Comprehensive experiments are then conducted to demonstrate the consistently superior performance and high generality of the proposed method over other feature selection methods in various of brain disorder prediction tasks, such as depression, schizophrenia, and Parkinson’s disease. Furthermore, compared to other node features, our approach unveils profound spatial patterns through graph pooling and structural learning, shedding light on pivotal brain regions influencing various brain disorder prediction based on derived features.</p></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1053811924002477/pdfft?md5=219bec4ff624ee37047fc27229c630c8&pid=1-s2.0-S1053811924002477-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811924002477\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811924002477","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Adaptive node feature extraction in graph-based neural networks for brain diseases diagnosis using self-supervised learning
Electroencephalography (EEG) has demonstrated significant value in diagnosing brain diseases. In particular, brain networks have gained prominence as they offer additional valuable insights by establishing connections between EEG signal channels. While brain connections are typically delineated by channel signal similarity, there lacks a consistent and reliable strategy for ascertaining node characteristics. Conventional node features such as temporal and frequency domain properties of EEG signals prove inadequate for capturing the extensive EEG information. In our investigation, we introduce a novel adaptive method for extracting node features from EEG signals utilizing a distinctive task-induced self-supervised learning technique. By amalgamating these extracted node features with fundamental edge features constructed using Pearson correlation coefficients, we showed that the proposed approach can function as a plug-in module that can be integrated to many common GNN networks (e.g., GCN, GraphSAGE, GAT) as a replacement of node feature selections module. Comprehensive experiments are then conducted to demonstrate the consistently superior performance and high generality of the proposed method over other feature selection methods in various of brain disorder prediction tasks, such as depression, schizophrenia, and Parkinson’s disease. Furthermore, compared to other node features, our approach unveils profound spatial patterns through graph pooling and structural learning, shedding light on pivotal brain regions influencing various brain disorder prediction based on derived features.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.