Radhika Joshi, Tamkeen U Paracha, Mahmoud M Mostafa, Andrew J Thorne, Varuna Jayasinghe, Dong Yan, Omar Hamed, Robert Newton, Mark A Giembycz
{"title":"比较 EP4 受体和 β2-肾上腺素受体激动剂在 BEAS-2B 人类支气管上皮细胞中的基因组活性:寻找分区化、依赖 cAMP 的基因表达。","authors":"Radhika Joshi, Tamkeen U Paracha, Mahmoud M Mostafa, Andrew J Thorne, Varuna Jayasinghe, Dong Yan, Omar Hamed, Robert Newton, Mark A Giembycz","doi":"10.1124/jpet.124.002226","DOIUrl":null,"url":null,"abstract":"<p><p>It has been proposed that inhaled E-prostanoid 4 (EP<sub>4</sub>)-receptor agonists could represent a new class of bronchodilators for the treatment of asthma that are as effective as <i>β</i> <sub>2</sub>-adrenoceptor agonists. However, the genomic impact of such drugs is unknown despite being potentially deleterious to respiratory health. Herein, we used mRNA-seq to compare the transcriptomic responses produced by 2-[3-[(1R,2S,3R)-3-hydroxy-2-[(E,3S)-3-hydroxy-5-[2-(methoxymethyl)phenyl]pent-1-enyl]-5-oxo-cyclopentyl]sulphanylpropylsulphanyl] acetic acid (ONO-AE1-329; an EP<sub>4</sub>-receptor agonist) and vilanterol (a <i>β</i> <sub>2</sub>-adrenoceptor agonist) in BEAS-2B human airway epithelial cells. We also determined if an increase in cAMP mediated by different G protein-coupled receptors (GPCRs) promoted distinct transcriptional signatures by expanding this inquiry to include the adenosine A<sub>2B</sub>- and I-prostanoid receptor agonists, 2-[[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide (Bay60-6583) and taprostene, respectively. Maximally-effective concentrations of ONO-AE1-329 and vilanterol significantly regulated (<i>q</i> ≤ 0.05; ≥1.5-/≤0.67-fold) 232 and 320 genes, respectively of which 217 were shared. Spearman analysis showed these gene expression changes to be highly rank order correlated, indicating that the functional overlap between the two interventions should be considerable. Unexpectedly, the genomic effects of ONO-AE1-329, vilanterol, Bay 60-6583, and taprostene were also highly rank order correlated. This finding suggests that cAMP generated by any GPCR would initiate the same transcriptional program. Nevertheless, relative to vilanterol, ONO-AE1-329 typically behaved as a partial agonist that varied across transcripts. These data indicate that each ONO-AE1-329-regulated gene differs in sensitivity to cAMP and is defined by a unique receptor occupancy-response relationship. Moreover, if this relatively modest genomic response in BEAS-2B cells is retained in vivo, then inhaled EP<sub>4</sub>-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators. SIGNIFICANCE STATEMENT: The genomic consequences of <i>β</i> <sub>2</sub>-adrenoceptor agonists in asthma are often overlooked despite being potentially harmful to lung health. We determined that ONO-AE1-329, an EP<sub>4</sub>-receptor agonist and effective bronchodilator, produced gene expression changes in BEAS-2B cells that were typically modest relative to the <i>β</i> <sub>2</sub>-adrenoceptor agonist vilanterol. Furthermore, ONO-AE1-329 behaved as a partial agonist that varied across transcripts. If this genomic activity is reproduced in vivo, then EP<sub>4</sub>-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":"64-81"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of the Genomic Activity of an EP<sub>4</sub>-Receptor and β<sub>2</sub>-Adrenoceptor Agonist in BEAS-2B Human Bronchial Epithelial Cells: In Search of Compartmentalized, cAMP-Dependent Gene Expression.\",\"authors\":\"Radhika Joshi, Tamkeen U Paracha, Mahmoud M Mostafa, Andrew J Thorne, Varuna Jayasinghe, Dong Yan, Omar Hamed, Robert Newton, Mark A Giembycz\",\"doi\":\"10.1124/jpet.124.002226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been proposed that inhaled E-prostanoid 4 (EP<sub>4</sub>)-receptor agonists could represent a new class of bronchodilators for the treatment of asthma that are as effective as <i>β</i> <sub>2</sub>-adrenoceptor agonists. However, the genomic impact of such drugs is unknown despite being potentially deleterious to respiratory health. Herein, we used mRNA-seq to compare the transcriptomic responses produced by 2-[3-[(1R,2S,3R)-3-hydroxy-2-[(E,3S)-3-hydroxy-5-[2-(methoxymethyl)phenyl]pent-1-enyl]-5-oxo-cyclopentyl]sulphanylpropylsulphanyl] acetic acid (ONO-AE1-329; an EP<sub>4</sub>-receptor agonist) and vilanterol (a <i>β</i> <sub>2</sub>-adrenoceptor agonist) in BEAS-2B human airway epithelial cells. We also determined if an increase in cAMP mediated by different G protein-coupled receptors (GPCRs) promoted distinct transcriptional signatures by expanding this inquiry to include the adenosine A<sub>2B</sub>- and I-prostanoid receptor agonists, 2-[[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide (Bay60-6583) and taprostene, respectively. Maximally-effective concentrations of ONO-AE1-329 and vilanterol significantly regulated (<i>q</i> ≤ 0.05; ≥1.5-/≤0.67-fold) 232 and 320 genes, respectively of which 217 were shared. Spearman analysis showed these gene expression changes to be highly rank order correlated, indicating that the functional overlap between the two interventions should be considerable. Unexpectedly, the genomic effects of ONO-AE1-329, vilanterol, Bay 60-6583, and taprostene were also highly rank order correlated. This finding suggests that cAMP generated by any GPCR would initiate the same transcriptional program. Nevertheless, relative to vilanterol, ONO-AE1-329 typically behaved as a partial agonist that varied across transcripts. These data indicate that each ONO-AE1-329-regulated gene differs in sensitivity to cAMP and is defined by a unique receptor occupancy-response relationship. Moreover, if this relatively modest genomic response in BEAS-2B cells is retained in vivo, then inhaled EP<sub>4</sub>-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators. SIGNIFICANCE STATEMENT: The genomic consequences of <i>β</i> <sub>2</sub>-adrenoceptor agonists in asthma are often overlooked despite being potentially harmful to lung health. We determined that ONO-AE1-329, an EP<sub>4</sub>-receptor agonist and effective bronchodilator, produced gene expression changes in BEAS-2B cells that were typically modest relative to the <i>β</i> <sub>2</sub>-adrenoceptor agonist vilanterol. Furthermore, ONO-AE1-329 behaved as a partial agonist that varied across transcripts. If this genomic activity is reproduced in vivo, then EP<sub>4</sub>-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators.</p>\",\"PeriodicalId\":16798,\"journal\":{\"name\":\"Journal of Pharmacology and Experimental Therapeutics\",\"volume\":\" \",\"pages\":\"64-81\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacology and Experimental Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/jpet.124.002226\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/jpet.124.002226","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Comparison of the Genomic Activity of an EP4-Receptor and β2-Adrenoceptor Agonist in BEAS-2B Human Bronchial Epithelial Cells: In Search of Compartmentalized, cAMP-Dependent Gene Expression.
It has been proposed that inhaled E-prostanoid 4 (EP4)-receptor agonists could represent a new class of bronchodilators for the treatment of asthma that are as effective as β2-adrenoceptor agonists. However, the genomic impact of such drugs is unknown despite being potentially deleterious to respiratory health. Herein, we used mRNA-seq to compare the transcriptomic responses produced by 2-[3-[(1R,2S,3R)-3-hydroxy-2-[(E,3S)-3-hydroxy-5-[2-(methoxymethyl)phenyl]pent-1-enyl]-5-oxo-cyclopentyl]sulphanylpropylsulphanyl] acetic acid (ONO-AE1-329; an EP4-receptor agonist) and vilanterol (a β2-adrenoceptor agonist) in BEAS-2B human airway epithelial cells. We also determined if an increase in cAMP mediated by different G protein-coupled receptors (GPCRs) promoted distinct transcriptional signatures by expanding this inquiry to include the adenosine A2B- and I-prostanoid receptor agonists, 2-[[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide (Bay60-6583) and taprostene, respectively. Maximally-effective concentrations of ONO-AE1-329 and vilanterol significantly regulated (q ≤ 0.05; ≥1.5-/≤0.67-fold) 232 and 320 genes, respectively of which 217 were shared. Spearman analysis showed these gene expression changes to be highly rank order correlated, indicating that the functional overlap between the two interventions should be considerable. Unexpectedly, the genomic effects of ONO-AE1-329, vilanterol, Bay 60-6583, and taprostene were also highly rank order correlated. This finding suggests that cAMP generated by any GPCR would initiate the same transcriptional program. Nevertheless, relative to vilanterol, ONO-AE1-329 typically behaved as a partial agonist that varied across transcripts. These data indicate that each ONO-AE1-329-regulated gene differs in sensitivity to cAMP and is defined by a unique receptor occupancy-response relationship. Moreover, if this relatively modest genomic response in BEAS-2B cells is retained in vivo, then inhaled EP4-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators. SIGNIFICANCE STATEMENT: The genomic consequences of β2-adrenoceptor agonists in asthma are often overlooked despite being potentially harmful to lung health. We determined that ONO-AE1-329, an EP4-receptor agonist and effective bronchodilator, produced gene expression changes in BEAS-2B cells that were typically modest relative to the β2-adrenoceptor agonist vilanterol. Furthermore, ONO-AE1-329 behaved as a partial agonist that varied across transcripts. If this genomic activity is reproduced in vivo, then EP4-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators.
期刊介绍:
A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.