Anthony P. Carnicelli MD (Assistant Professor of Medicine/Cardiology) , Sean van Diepen MD , Ann Gage MD , Alexander M. Bernhardt MD , Jennifer Cowger MD , Brian A. Houston MD , Matt T. Siuba DO , Rachna Kataria MD , Craig J. Beavers PharmD , Kevin J. John MD , Bart Meyns MD PhD , Navin K. Kapur MD , Ryan J. Tedford MD , Manreet Kanwar MD
{"title":"在急性右心室衰竭中采用临时机械循环支持的实用方法。","authors":"Anthony P. Carnicelli MD (Assistant Professor of Medicine/Cardiology) , Sean van Diepen MD , Ann Gage MD , Alexander M. Bernhardt MD , Jennifer Cowger MD , Brian A. Houston MD , Matt T. Siuba DO , Rachna Kataria MD , Craig J. Beavers PharmD , Kevin J. John MD , Bart Meyns MD PhD , Navin K. Kapur MD , Ryan J. Tedford MD , Manreet Kanwar MD","doi":"10.1016/j.healun.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><div>Acute right ventricular failure (RVF) is prevalent in multiple disease states and is associated with poor clinical outcomes. Right-sided temporary mechanical circulatory support (tMCS) devices are used to unload RV congestion and increase cardiac output in cardiogenic shock (CS) with hemodynamically significant RVF. Several RV-tMCS device platforms are available; however consensus is lacking on patient selection, timing of escalation to RV-tMCS, device management, and device weaning. The purposes of this review are to 1) describe the current state of tMCS device therapies for acute RVF with CS, 2) discuss principles of escalation to RV-tMCS device therapy, 3) examine important aspects of clinical management for patients supported by RV-tMCS devices including volume management, anticoagulation, and positive pressure ventilation, and 4) provide a framework for RV-tMCS weaning.</div></div>","PeriodicalId":15900,"journal":{"name":"Journal of Heart and Lung Transplantation","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pragmatic approach to temporary mechanical circulatory support in acute right ventricular failure\",\"authors\":\"Anthony P. Carnicelli MD (Assistant Professor of Medicine/Cardiology) , Sean van Diepen MD , Ann Gage MD , Alexander M. Bernhardt MD , Jennifer Cowger MD , Brian A. Houston MD , Matt T. Siuba DO , Rachna Kataria MD , Craig J. Beavers PharmD , Kevin J. John MD , Bart Meyns MD PhD , Navin K. Kapur MD , Ryan J. Tedford MD , Manreet Kanwar MD\",\"doi\":\"10.1016/j.healun.2024.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Acute right ventricular failure (RVF) is prevalent in multiple disease states and is associated with poor clinical outcomes. Right-sided temporary mechanical circulatory support (tMCS) devices are used to unload RV congestion and increase cardiac output in cardiogenic shock (CS) with hemodynamically significant RVF. Several RV-tMCS device platforms are available; however consensus is lacking on patient selection, timing of escalation to RV-tMCS, device management, and device weaning. The purposes of this review are to 1) describe the current state of tMCS device therapies for acute RVF with CS, 2) discuss principles of escalation to RV-tMCS device therapy, 3) examine important aspects of clinical management for patients supported by RV-tMCS devices including volume management, anticoagulation, and positive pressure ventilation, and 4) provide a framework for RV-tMCS weaning.</div></div>\",\"PeriodicalId\":15900,\"journal\":{\"name\":\"Journal of Heart and Lung Transplantation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Heart and Lung Transplantation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053249824017406\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heart and Lung Transplantation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053249824017406","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Pragmatic approach to temporary mechanical circulatory support in acute right ventricular failure
Acute right ventricular failure (RVF) is prevalent in multiple disease states and is associated with poor clinical outcomes. Right-sided temporary mechanical circulatory support (tMCS) devices are used to unload RV congestion and increase cardiac output in cardiogenic shock (CS) with hemodynamically significant RVF. Several RV-tMCS device platforms are available; however consensus is lacking on patient selection, timing of escalation to RV-tMCS, device management, and device weaning. The purposes of this review are to 1) describe the current state of tMCS device therapies for acute RVF with CS, 2) discuss principles of escalation to RV-tMCS device therapy, 3) examine important aspects of clinical management for patients supported by RV-tMCS devices including volume management, anticoagulation, and positive pressure ventilation, and 4) provide a framework for RV-tMCS weaning.
期刊介绍:
The Journal of Heart and Lung Transplantation, the official publication of the International Society for Heart and Lung Transplantation, brings readers essential scholarly and timely information in the field of cardio-pulmonary transplantation, mechanical and biological support of the failing heart, advanced lung disease (including pulmonary vascular disease) and cell replacement therapy. Importantly, the journal also serves as a medium of communication of pre-clinical sciences in all these rapidly expanding areas.