持续规范方法:系统回顾与真实数据示例。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Julian Urban, Vsevolod Scherrer, Anja Strobel, Franzis Preckel
{"title":"持续规范方法:系统回顾与真实数据示例。","authors":"Julian Urban, Vsevolod Scherrer, Anja Strobel, Franzis Preckel","doi":"10.1177/10731911241260545","DOIUrl":null,"url":null,"abstract":"<p><p>Norming of psychological tests is decisive for test score interpretation. However, conventional norming based on subgroups results either in biases or require very large samples to gather precise norms. Continuous norming methods, namely inferential, semi-parametric, and (simplified) parametric norming, propose to solve those issues. This article provides a systematic review of continuous norming. The review includes 121 publications with overall 189 studies. The main findings indicate that most studies used simplified parametric norming, not all studies considered essential distributional assumptions, and the evidence comparing different norming methods is inconclusive. In a real data example, using the standardization sample of the Need for Cognition-KIDS scale, we compared the precision of conventional, semi-parametric, and parametric norms. A hierarchy in terms of precision emerged with conventional norms being least precise, followed by semi-parametric norms, and parametric norms being most precise. We discuss these findings by comparing our findings and methods to previous studies.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous Norming Approaches: A Systematic Review and Real Data Example.\",\"authors\":\"Julian Urban, Vsevolod Scherrer, Anja Strobel, Franzis Preckel\",\"doi\":\"10.1177/10731911241260545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Norming of psychological tests is decisive for test score interpretation. However, conventional norming based on subgroups results either in biases or require very large samples to gather precise norms. Continuous norming methods, namely inferential, semi-parametric, and (simplified) parametric norming, propose to solve those issues. This article provides a systematic review of continuous norming. The review includes 121 publications with overall 189 studies. The main findings indicate that most studies used simplified parametric norming, not all studies considered essential distributional assumptions, and the evidence comparing different norming methods is inconclusive. In a real data example, using the standardization sample of the Need for Cognition-KIDS scale, we compared the precision of conventional, semi-parametric, and parametric norms. A hierarchy in terms of precision emerged with conventional norms being least precise, followed by semi-parametric norms, and parametric norms being most precise. We discuss these findings by comparing our findings and methods to previous studies.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/10731911241260545\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/10731911241260545","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

心理测验的常模对测验分数的解释起着决定性的作用。然而,传统的基于分组的常模法要么会导致偏差,要么需要非常大的样本才能收集到精确的常模。连续常模法,即推断常模法、半参数常模法和(简化的)参数常模法,提出了解决这些问题的方法。本文对连续常模进行了系统综述。综述包括 121 篇出版物,共计 189 项研究。主要研究结果表明,大多数研究使用了简化参数规范化方法,并非所有研究都考虑了基本的分布假设,而且比较不同规范化方法的证据并不确定。以认知需要-儿童量表的标准化样本为例,我们比较了传统标准、半参数标准和参数标准的精确度。在精确度方面,我们发现了一个层次结构,即传统标准的精确度最低,其次是半参数标准,而参数标准的精确度最高。通过将我们的研究结果和方法与之前的研究进行比较,我们对这些发现进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous Norming Approaches: A Systematic Review and Real Data Example.

Norming of psychological tests is decisive for test score interpretation. However, conventional norming based on subgroups results either in biases or require very large samples to gather precise norms. Continuous norming methods, namely inferential, semi-parametric, and (simplified) parametric norming, propose to solve those issues. This article provides a systematic review of continuous norming. The review includes 121 publications with overall 189 studies. The main findings indicate that most studies used simplified parametric norming, not all studies considered essential distributional assumptions, and the evidence comparing different norming methods is inconclusive. In a real data example, using the standardization sample of the Need for Cognition-KIDS scale, we compared the precision of conventional, semi-parametric, and parametric norms. A hierarchy in terms of precision emerged with conventional norms being least precise, followed by semi-parametric norms, and parametric norms being most precise. We discuss these findings by comparing our findings and methods to previous studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信