开发出性能优于商用闪烁体(UPS-923A)的塑料闪烁体,以及荧光团组成对光输出的影响。

IF 1.6 3区 工程技术 Q3 CHEMISTRY, INORGANIC & NUCLEAR
{"title":"开发出性能优于商用闪烁体(UPS-923A)的塑料闪烁体,以及荧光团组成对光输出的影响。","authors":"","doi":"10.1016/j.apradiso.2024.111453","DOIUrl":null,"url":null,"abstract":"<div><p>In this study we have synthesized polystyrene based plastic scintillators (PS) loaded with commercially available fluorophores like <em>p</em>-Terphenyl and 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP). Optimum concentration of the fluorophores in the synthesized PS was determined. The PS exhibited 1.55 ± 0.05 times better light output than UPS-923A, a commercial PS. Emission maxima were obtained at 423 nm with an energy linearity of 99.78% up to 1.061 MeV. Radiation damage of PS by Co-60 irradiation led to 22.3% loss of light yield at 50 kGy radiation dose which is better than the commercial one. The loss of light output in the PS due to radiation damage was because of the degradation of polystyrene matrix rather than the fluorophores.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of plastic scintillator with better performance than the commercial counterpart (UPS-923A) and effect of fluorophore composition on light output\",\"authors\":\"\",\"doi\":\"10.1016/j.apradiso.2024.111453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study we have synthesized polystyrene based plastic scintillators (PS) loaded with commercially available fluorophores like <em>p</em>-Terphenyl and 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP). Optimum concentration of the fluorophores in the synthesized PS was determined. The PS exhibited 1.55 ± 0.05 times better light output than UPS-923A, a commercial PS. Emission maxima were obtained at 423 nm with an energy linearity of 99.78% up to 1.061 MeV. Radiation damage of PS by Co-60 irradiation led to 22.3% loss of light yield at 50 kGy radiation dose which is better than the commercial one. The loss of light output in the PS due to radiation damage was because of the degradation of polystyrene matrix rather than the fluorophores.</p></div>\",\"PeriodicalId\":8096,\"journal\":{\"name\":\"Applied Radiation and Isotopes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Radiation and Isotopes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969804324002811\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804324002811","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们合成了含有对三联苯和 1,4-双(5-苯基恶唑-2-基)苯(POPOP)等市售荧光团的聚苯乙烯基塑料闪烁体(PS)。确定了合成 PS 中荧光团的最佳浓度。这种 PS 的光输出比商用 PS UPS-923A 高出 1.55 ± 0.05 倍。最大发射波长为 423 nm,能量线性度为 99.78%,最高可达 1.061 MeV。在 50 kGy 辐射剂量下,Co-60 对 PS 的辐射损伤导致光输出损失 22.3%,优于商用 PS。辐射损伤导致的聚苯乙烯光输出损失是由于聚苯乙烯基质而不是荧光团的降解造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of plastic scintillator with better performance than the commercial counterpart (UPS-923A) and effect of fluorophore composition on light output

In this study we have synthesized polystyrene based plastic scintillators (PS) loaded with commercially available fluorophores like p-Terphenyl and 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP). Optimum concentration of the fluorophores in the synthesized PS was determined. The PS exhibited 1.55 ± 0.05 times better light output than UPS-923A, a commercial PS. Emission maxima were obtained at 423 nm with an energy linearity of 99.78% up to 1.061 MeV. Radiation damage of PS by Co-60 irradiation led to 22.3% loss of light yield at 50 kGy radiation dose which is better than the commercial one. The loss of light output in the PS due to radiation damage was because of the degradation of polystyrene matrix rather than the fluorophores.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Radiation and Isotopes
Applied Radiation and Isotopes 工程技术-核科学技术
CiteScore
3.00
自引率
12.50%
发文量
406
审稿时长
13.5 months
期刊介绍: Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信