{"title":"人工智能数字银行的持续使用意向:期望确认模型评述","authors":"Puneett Bhatnagr, Anupama Rajesh, Richa Misra","doi":"10.1108/jeim-11-2023-0617","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study builds on a conceptual model by integrating AI features – Perceived intelligence (PIN) and anthropomorphism (PAN) – while extending expectation confirmation theory (ECT) factors – interaction quality (IQU), confirmation (CON), and customer experience (CSE) – to evaluate the continued intention to use (CIU) of AI-enabled digital banking services.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Data were collected through an online questionnaire administered to 390 digital banking customers in India. The data were further analysed, and the presented hypotheses were evaluated using partial least squares structural equation modelling (PLS-SEM).</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The research indicates that perceived intelligence and anthropomorphism predict interaction quality. Interaction quality significantly impacts expectation confirmation, consumer experience, and the continuous intention to use digital banking services powered by AI technology. AI design will become a fundamental factor; thus, all interactions should be user-friendly, efficient, and reliable, and the successful implementation of AI in digital banking will largely depend on AI features.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This study is the first to demonstrate the effectiveness of an AI-ECT model for AI-enabled Indian digital banks. The user continuance intention to use digital banking in the context of AI has not yet been studied. These findings further enrich the literature on AI, digital banking, and information systems by focusing on the AI's Intelligence and Anthropomorphism variables in digital banks.</p><!--/ Abstract__block -->","PeriodicalId":47889,"journal":{"name":"Journal of Enterprise Information Management","volume":"13 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous intention usage of artificial intelligence enabled digital banks: a review of expectation confirmation model\",\"authors\":\"Puneett Bhatnagr, Anupama Rajesh, Richa Misra\",\"doi\":\"10.1108/jeim-11-2023-0617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This study builds on a conceptual model by integrating AI features – Perceived intelligence (PIN) and anthropomorphism (PAN) – while extending expectation confirmation theory (ECT) factors – interaction quality (IQU), confirmation (CON), and customer experience (CSE) – to evaluate the continued intention to use (CIU) of AI-enabled digital banking services.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Data were collected through an online questionnaire administered to 390 digital banking customers in India. The data were further analysed, and the presented hypotheses were evaluated using partial least squares structural equation modelling (PLS-SEM).</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The research indicates that perceived intelligence and anthropomorphism predict interaction quality. Interaction quality significantly impacts expectation confirmation, consumer experience, and the continuous intention to use digital banking services powered by AI technology. AI design will become a fundamental factor; thus, all interactions should be user-friendly, efficient, and reliable, and the successful implementation of AI in digital banking will largely depend on AI features.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This study is the first to demonstrate the effectiveness of an AI-ECT model for AI-enabled Indian digital banks. The user continuance intention to use digital banking in the context of AI has not yet been studied. These findings further enrich the literature on AI, digital banking, and information systems by focusing on the AI's Intelligence and Anthropomorphism variables in digital banks.</p><!--/ Abstract__block -->\",\"PeriodicalId\":47889,\"journal\":{\"name\":\"Journal of Enterprise Information Management\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Enterprise Information Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1108/jeim-11-2023-0617\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enterprise Information Management","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/jeim-11-2023-0617","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
Continuous intention usage of artificial intelligence enabled digital banks: a review of expectation confirmation model
Purpose
This study builds on a conceptual model by integrating AI features – Perceived intelligence (PIN) and anthropomorphism (PAN) – while extending expectation confirmation theory (ECT) factors – interaction quality (IQU), confirmation (CON), and customer experience (CSE) – to evaluate the continued intention to use (CIU) of AI-enabled digital banking services.
Design/methodology/approach
Data were collected through an online questionnaire administered to 390 digital banking customers in India. The data were further analysed, and the presented hypotheses were evaluated using partial least squares structural equation modelling (PLS-SEM).
Findings
The research indicates that perceived intelligence and anthropomorphism predict interaction quality. Interaction quality significantly impacts expectation confirmation, consumer experience, and the continuous intention to use digital banking services powered by AI technology. AI design will become a fundamental factor; thus, all interactions should be user-friendly, efficient, and reliable, and the successful implementation of AI in digital banking will largely depend on AI features.
Originality/value
This study is the first to demonstrate the effectiveness of an AI-ECT model for AI-enabled Indian digital banks. The user continuance intention to use digital banking in the context of AI has not yet been studied. These findings further enrich the literature on AI, digital banking, and information systems by focusing on the AI's Intelligence and Anthropomorphism variables in digital banks.
期刊介绍:
The Journal of Enterprise Information Management (JEIM) is a significant contributor to the normative literature, offering both conceptual and practical insights supported by innovative discoveries that enrich the existing body of knowledge.
Within its pages, JEIM presents research findings sourced from globally renowned experts. These contributions encompass scholarly examinations of cutting-edge theories and practices originating from leading research institutions. Additionally, the journal features inputs from senior business executives and consultants, who share their insights gleaned from specific enterprise case studies. Through these reports, readers benefit from a comparative analysis of different environmental contexts, facilitating valuable learning experiences.
JEIM's distinctive blend of theoretical analysis and practical application fosters comprehensive discussions on commercial discoveries. This approach enhances the audience's comprehension of contemporary, applied, and rigorous information management practices, which extend across entire enterprises and their intricate supply chains.