Joshua R. York, Anjali Rao, Paul B. Huber, Elizabeth N. Schock, Andrew Montequin, Sara Rigney, Carole LaBonne
{"title":"脊椎动物基部进化出的胚泡干细胞和神经嵴干细胞的共同特征","authors":"Joshua R. York, Anjali Rao, Paul B. Huber, Elizabeth N. Schock, Andrew Montequin, Sara Rigney, Carole LaBonne","doi":"10.1038/s41559-024-02476-8","DOIUrl":null,"url":null,"abstract":"The neural crest is a vertebrate-specific stem cell population that helped drive the origin and evolution of vertebrates. A distinguishing feature of these cells is their multi-germ layer potential, which has parallels to another stem cell population—pluripotent stem cells of the vertebrate blastula. Here, we investigate the evolutionary origins of neural crest potential by comparing neural crest and pluripotency gene regulatory networks of a jawed vertebrate, Xenopus, and a jawless vertebrate, lamprey. We reveal an ancient evolutionary origin of shared regulatory factors in these gene regulatory networks that dates to the last common ancestor of extant vertebrates. Focusing on the key pluripotency factor pou5, we show that a lamprey pou5 orthologue is expressed in animal pole cells but is absent from neural crest. Both lamprey and Xenopus pou5 promote neural crest formation, suggesting that pou5 activity was lost from the neural crest of jawless vertebrates or acquired along the jawed vertebrate stem. Finally, we provide evidence that pou5 acquired novel, neural crest-enhancing activity after evolving from an ancestral pou3-like clade. This work provides evidence that both the neural crest and blastula pluripotency networks arose at the base of the vertebrates and that this may be linked to functional evolution of pou5. Comparison of neural crest and pluripotency gene regulatory networks of Xenopus and lamprey reveals shared regulatory factors in the last common ancestor of extant vertebrates and suggests common molecular features of blastula and neural crest stem cells.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":null,"pages":null},"PeriodicalIF":13.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shared features of blastula and neural crest stem cells evolved at the base of vertebrates\",\"authors\":\"Joshua R. York, Anjali Rao, Paul B. Huber, Elizabeth N. Schock, Andrew Montequin, Sara Rigney, Carole LaBonne\",\"doi\":\"10.1038/s41559-024-02476-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The neural crest is a vertebrate-specific stem cell population that helped drive the origin and evolution of vertebrates. A distinguishing feature of these cells is their multi-germ layer potential, which has parallels to another stem cell population—pluripotent stem cells of the vertebrate blastula. Here, we investigate the evolutionary origins of neural crest potential by comparing neural crest and pluripotency gene regulatory networks of a jawed vertebrate, Xenopus, and a jawless vertebrate, lamprey. We reveal an ancient evolutionary origin of shared regulatory factors in these gene regulatory networks that dates to the last common ancestor of extant vertebrates. Focusing on the key pluripotency factor pou5, we show that a lamprey pou5 orthologue is expressed in animal pole cells but is absent from neural crest. Both lamprey and Xenopus pou5 promote neural crest formation, suggesting that pou5 activity was lost from the neural crest of jawless vertebrates or acquired along the jawed vertebrate stem. Finally, we provide evidence that pou5 acquired novel, neural crest-enhancing activity after evolving from an ancestral pou3-like clade. This work provides evidence that both the neural crest and blastula pluripotency networks arose at the base of the vertebrates and that this may be linked to functional evolution of pou5. Comparison of neural crest and pluripotency gene regulatory networks of Xenopus and lamprey reveals shared regulatory factors in the last common ancestor of extant vertebrates and suggests common molecular features of blastula and neural crest stem cells.\",\"PeriodicalId\":18835,\"journal\":{\"name\":\"Nature ecology & evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41559-024-02476-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41559-024-02476-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Shared features of blastula and neural crest stem cells evolved at the base of vertebrates
The neural crest is a vertebrate-specific stem cell population that helped drive the origin and evolution of vertebrates. A distinguishing feature of these cells is their multi-germ layer potential, which has parallels to another stem cell population—pluripotent stem cells of the vertebrate blastula. Here, we investigate the evolutionary origins of neural crest potential by comparing neural crest and pluripotency gene regulatory networks of a jawed vertebrate, Xenopus, and a jawless vertebrate, lamprey. We reveal an ancient evolutionary origin of shared regulatory factors in these gene regulatory networks that dates to the last common ancestor of extant vertebrates. Focusing on the key pluripotency factor pou5, we show that a lamprey pou5 orthologue is expressed in animal pole cells but is absent from neural crest. Both lamprey and Xenopus pou5 promote neural crest formation, suggesting that pou5 activity was lost from the neural crest of jawless vertebrates or acquired along the jawed vertebrate stem. Finally, we provide evidence that pou5 acquired novel, neural crest-enhancing activity after evolving from an ancestral pou3-like clade. This work provides evidence that both the neural crest and blastula pluripotency networks arose at the base of the vertebrates and that this may be linked to functional evolution of pou5. Comparison of neural crest and pluripotency gene regulatory networks of Xenopus and lamprey reveals shared regulatory factors in the last common ancestor of extant vertebrates and suggests common molecular features of blastula and neural crest stem cells.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.