Duolikun Wufuer, Dilibaier Yimingjiang, Kamilijiang Maimaitiming, Jun Li, Wulifan Tuoleheng
{"title":"新疆外周血中 FOXN3-SIN3A 复合物表达与非综合征唇腭裂的相关性。","authors":"Duolikun Wufuer, Dilibaier Yimingjiang, Kamilijiang Maimaitiming, Jun Li, Wulifan Tuoleheng","doi":"10.7518/hxkq.2024.2023340","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This work aimed to study the correlation between FOXN3-SIN3A complex expression and non-syndromic oral clefts (NSOC) in Xinjiang.</p><p><strong>Methods: </strong>In this study, 60 patients with NSOC attending the People's Hospital of Xinjiang Uygur Autonomous Region were recruited into the case group, including 30 cleft lip with or without cleft palate (NSCL/P), 30 cleft palate only (CPO), and 30 healthy children in the control group. The expression levels of FOXN3, SIN3A, and NEAT1 in peripheral blood of each group were detected by high-throughput second-generation sequencing technology and quantitative reverse transcription polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to analyze the diagnostic efficiency of NSOC.</p><p><strong>Results: </strong>The comparison of the NSOC and control groups showed that FOXN3, SIN3A, and NEAT1 genes increased compared with the control group. The differences were all statistically significant (<i>P</i><0.05). The AUCs of FOXN3, SIN3A, and NEAT1 in the NSCL/P group were 0.933 [95%CI=(0.864, 1.000)], 0.822 [(95%CI=(0.713, 0.932)], and 1.000[95%CI= (1.000, 1.000)], respectively. The AUCs of FOX-N3, SIN3A, and NEAT1 in the CPO group were 0.891 [95%CI=(0.806, 0.976)], 0.688 [95%CI=(0.552, 0.824)], and 1.000 [95%CI=(1.000, 1.000)], respectively.</p><p><strong>Conclusions: </strong>The results showed a correlation between the rising gene expression of FOXN3, SIN3A, and NEAT1 in peripheral blood and the occurrence of NSOC in Xinjiang. This work provides a theoretical basis for further study of the FOXN3-SIN3A complex as biomarkers to facilitate the early screening, disease prediction, and early prevention of NSOC.</p>","PeriodicalId":94028,"journal":{"name":"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology","volume":"42 3","pages":"313-318"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190867/pdf/","citationCount":"0","resultStr":"{\"title\":\"Correlation between FOXN3-SIN3A complex expression in peripheral blood and non-syndromic cleft lip and palate in Xinjiang.\",\"authors\":\"Duolikun Wufuer, Dilibaier Yimingjiang, Kamilijiang Maimaitiming, Jun Li, Wulifan Tuoleheng\",\"doi\":\"10.7518/hxkq.2024.2023340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This work aimed to study the correlation between FOXN3-SIN3A complex expression and non-syndromic oral clefts (NSOC) in Xinjiang.</p><p><strong>Methods: </strong>In this study, 60 patients with NSOC attending the People's Hospital of Xinjiang Uygur Autonomous Region were recruited into the case group, including 30 cleft lip with or without cleft palate (NSCL/P), 30 cleft palate only (CPO), and 30 healthy children in the control group. The expression levels of FOXN3, SIN3A, and NEAT1 in peripheral blood of each group were detected by high-throughput second-generation sequencing technology and quantitative reverse transcription polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to analyze the diagnostic efficiency of NSOC.</p><p><strong>Results: </strong>The comparison of the NSOC and control groups showed that FOXN3, SIN3A, and NEAT1 genes increased compared with the control group. The differences were all statistically significant (<i>P</i><0.05). The AUCs of FOXN3, SIN3A, and NEAT1 in the NSCL/P group were 0.933 [95%CI=(0.864, 1.000)], 0.822 [(95%CI=(0.713, 0.932)], and 1.000[95%CI= (1.000, 1.000)], respectively. The AUCs of FOX-N3, SIN3A, and NEAT1 in the CPO group were 0.891 [95%CI=(0.806, 0.976)], 0.688 [95%CI=(0.552, 0.824)], and 1.000 [95%CI=(1.000, 1.000)], respectively.</p><p><strong>Conclusions: </strong>The results showed a correlation between the rising gene expression of FOXN3, SIN3A, and NEAT1 in peripheral blood and the occurrence of NSOC in Xinjiang. This work provides a theoretical basis for further study of the FOXN3-SIN3A complex as biomarkers to facilitate the early screening, disease prediction, and early prevention of NSOC.</p>\",\"PeriodicalId\":94028,\"journal\":{\"name\":\"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology\",\"volume\":\"42 3\",\"pages\":\"313-318\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190867/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7518/hxkq.2024.2023340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7518/hxkq.2024.2023340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Correlation between FOXN3-SIN3A complex expression in peripheral blood and non-syndromic cleft lip and palate in Xinjiang.
Objectives: This work aimed to study the correlation between FOXN3-SIN3A complex expression and non-syndromic oral clefts (NSOC) in Xinjiang.
Methods: In this study, 60 patients with NSOC attending the People's Hospital of Xinjiang Uygur Autonomous Region were recruited into the case group, including 30 cleft lip with or without cleft palate (NSCL/P), 30 cleft palate only (CPO), and 30 healthy children in the control group. The expression levels of FOXN3, SIN3A, and NEAT1 in peripheral blood of each group were detected by high-throughput second-generation sequencing technology and quantitative reverse transcription polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to analyze the diagnostic efficiency of NSOC.
Results: The comparison of the NSOC and control groups showed that FOXN3, SIN3A, and NEAT1 genes increased compared with the control group. The differences were all statistically significant (P<0.05). The AUCs of FOXN3, SIN3A, and NEAT1 in the NSCL/P group were 0.933 [95%CI=(0.864, 1.000)], 0.822 [(95%CI=(0.713, 0.932)], and 1.000[95%CI= (1.000, 1.000)], respectively. The AUCs of FOX-N3, SIN3A, and NEAT1 in the CPO group were 0.891 [95%CI=(0.806, 0.976)], 0.688 [95%CI=(0.552, 0.824)], and 1.000 [95%CI=(1.000, 1.000)], respectively.
Conclusions: The results showed a correlation between the rising gene expression of FOXN3, SIN3A, and NEAT1 in peripheral blood and the occurrence of NSOC in Xinjiang. This work provides a theoretical basis for further study of the FOXN3-SIN3A complex as biomarkers to facilitate the early screening, disease prediction, and early prevention of NSOC.