Kaila M. Bianco , Ian Fuelscher , Jarrad A.G. Lum , Mervyn Singh , Pamela Barhoun , Timothy J. Silk , Karen Caeyenberghs , Jacqueline Williams , Peter G. Enticott , Mugdha Mukherjee , Gayatri Kumar , Jessica Waugh , Christian Hyde
{"title":"程序学习与儿童基底神经节-小脑回路的微结构有关。","authors":"Kaila M. Bianco , Ian Fuelscher , Jarrad A.G. Lum , Mervyn Singh , Pamela Barhoun , Timothy J. Silk , Karen Caeyenberghs , Jacqueline Williams , Peter G. Enticott , Mugdha Mukherjee , Gayatri Kumar , Jessica Waugh , Christian Hyde","doi":"10.1016/j.bandc.2024.106204","DOIUrl":null,"url":null,"abstract":"<div><p>In adults, individual differences in procedural learning (PL) are associated with white matter organization within the basal ganglia-cerebellar circuit. However, no research has examined whether this circuitry is related to individual differences in PL during childhood. Here, 28 children (<em>M</em><sub>age</sub> = 10.00 ± 2.31, 10 female) completed the serial reaction time (SRT) task to measure PL, and underwent structural magnetic resonance imaging (MRI). Fixel-Based Analysis was performed to extract specific measures of white matter fiber density (FD) and fiber cross-section (FC) from the superior cerebellar peduncles (SCP) and the striatal premotor tracts (STPMT), which underlie the fronto-basal ganglia-cerebellar system. These fixel metrics were correlated with the ‘rebound effect’ from the SRT task – a measure of PL proficiency which compares reaction times associated with generating a sequence, to random trials. While no significant associations were observed at the fixel level, a significant positive association was observed between average FD in the right SCP and the rebound effect, with a similar trend observed in the left SCP. No significant effects were detected in the STPMT. Our results indicate that, like in adults, microstructure of the basal ganglia-cerebellar circuit may explain individual differences in childhood PL.</p></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"180 ","pages":"Article 106204"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0278262624000812/pdfft?md5=0b945db019891461c1a32623421f1e59&pid=1-s2.0-S0278262624000812-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Procedural learning is associated with microstructure of basal ganglia-cerebellar circuitry in children\",\"authors\":\"Kaila M. Bianco , Ian Fuelscher , Jarrad A.G. Lum , Mervyn Singh , Pamela Barhoun , Timothy J. Silk , Karen Caeyenberghs , Jacqueline Williams , Peter G. Enticott , Mugdha Mukherjee , Gayatri Kumar , Jessica Waugh , Christian Hyde\",\"doi\":\"10.1016/j.bandc.2024.106204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In adults, individual differences in procedural learning (PL) are associated with white matter organization within the basal ganglia-cerebellar circuit. However, no research has examined whether this circuitry is related to individual differences in PL during childhood. Here, 28 children (<em>M</em><sub>age</sub> = 10.00 ± 2.31, 10 female) completed the serial reaction time (SRT) task to measure PL, and underwent structural magnetic resonance imaging (MRI). Fixel-Based Analysis was performed to extract specific measures of white matter fiber density (FD) and fiber cross-section (FC) from the superior cerebellar peduncles (SCP) and the striatal premotor tracts (STPMT), which underlie the fronto-basal ganglia-cerebellar system. These fixel metrics were correlated with the ‘rebound effect’ from the SRT task – a measure of PL proficiency which compares reaction times associated with generating a sequence, to random trials. While no significant associations were observed at the fixel level, a significant positive association was observed between average FD in the right SCP and the rebound effect, with a similar trend observed in the left SCP. No significant effects were detected in the STPMT. Our results indicate that, like in adults, microstructure of the basal ganglia-cerebellar circuit may explain individual differences in childhood PL.</p></div>\",\"PeriodicalId\":55331,\"journal\":{\"name\":\"Brain and Cognition\",\"volume\":\"180 \",\"pages\":\"Article 106204\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0278262624000812/pdfft?md5=0b945db019891461c1a32623421f1e59&pid=1-s2.0-S0278262624000812-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Cognition\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278262624000812\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Cognition","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278262624000812","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Procedural learning is associated with microstructure of basal ganglia-cerebellar circuitry in children
In adults, individual differences in procedural learning (PL) are associated with white matter organization within the basal ganglia-cerebellar circuit. However, no research has examined whether this circuitry is related to individual differences in PL during childhood. Here, 28 children (Mage = 10.00 ± 2.31, 10 female) completed the serial reaction time (SRT) task to measure PL, and underwent structural magnetic resonance imaging (MRI). Fixel-Based Analysis was performed to extract specific measures of white matter fiber density (FD) and fiber cross-section (FC) from the superior cerebellar peduncles (SCP) and the striatal premotor tracts (STPMT), which underlie the fronto-basal ganglia-cerebellar system. These fixel metrics were correlated with the ‘rebound effect’ from the SRT task – a measure of PL proficiency which compares reaction times associated with generating a sequence, to random trials. While no significant associations were observed at the fixel level, a significant positive association was observed between average FD in the right SCP and the rebound effect, with a similar trend observed in the left SCP. No significant effects were detected in the STPMT. Our results indicate that, like in adults, microstructure of the basal ganglia-cerebellar circuit may explain individual differences in childhood PL.
期刊介绍:
Brain and Cognition is a forum for the integration of the neurosciences and cognitive sciences. B&C publishes peer-reviewed research articles, theoretical papers, case histories that address important theoretical issues, and historical articles into the interaction between cognitive function and brain processes. The focus is on rigorous studies of an empirical or theoretical nature and which make an original contribution to our knowledge about the involvement of the nervous system in cognition. Coverage includes, but is not limited to memory, learning, emotion, perception, movement, music or praxis in relationship to brain structure or function. Published articles will typically address issues relating some aspect of cognitive function to its neurological substrates with clear theoretical import, formulating new hypotheses or refuting previously established hypotheses. Clinical papers are welcome if they raise issues of theoretical importance or concern and shed light on the interaction between brain function and cognitive function. We welcome review articles that clearly contribute a new perspective or integration, beyond summarizing the literature in the field; authors of review articles should make explicit where the contribution lies. We also welcome proposals for special issues on aspects of the relation between cognition and the structure and function of the nervous system. Such proposals can be made directly to the Editor-in-Chief from individuals interested in being guest editors for such collections.