{"title":"在意志控制下的节奏行为瞬时相位。","authors":"Leonardo Lancia","doi":"10.1016/j.humov.2024.103249","DOIUrl":null,"url":null,"abstract":"<div><p>The phase of signals representing cyclic behavioural patterns provides valuable information for understanding the mechanisms driving the observed behaviours. Methods usually adopted to estimate the phase, which are based on projecting the signal onto the complex plane, have strict requirements on its frequency content, which limits their application. To overcome these limitations, input signals can be processed using band-pass filters or decomposition techniques. In this paper, we briefly review these approaches and propose a new one. Our approach is based on the principles of Empirical Mode Decomposition (EMD), but unlike EMD, it does not aim to decompose the input signal. This avoids the many problems that can occur when extracting a signal's components one by one. The proposed approach estimates the phase of experimental signals that have one main oscillatory component modulated by slower activity and perturbed by weak, sparse, or random activity at faster time scales. We illustrate how our approach works by estimating the phase dynamics of synthetic signals and real-world signals representing knee angles during flexion/extension activity, heel height during gait, and the activity of different organs involved in speech production.</p></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":"96 ","pages":"Article 103249"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167945724000721/pdfft?md5=4e99a68e5136bba829ac0eb1db16a00b&pid=1-s2.0-S0167945724000721-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Instantaneous phase of rhythmic behaviour under volitional control\",\"authors\":\"Leonardo Lancia\",\"doi\":\"10.1016/j.humov.2024.103249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The phase of signals representing cyclic behavioural patterns provides valuable information for understanding the mechanisms driving the observed behaviours. Methods usually adopted to estimate the phase, which are based on projecting the signal onto the complex plane, have strict requirements on its frequency content, which limits their application. To overcome these limitations, input signals can be processed using band-pass filters or decomposition techniques. In this paper, we briefly review these approaches and propose a new one. Our approach is based on the principles of Empirical Mode Decomposition (EMD), but unlike EMD, it does not aim to decompose the input signal. This avoids the many problems that can occur when extracting a signal's components one by one. The proposed approach estimates the phase of experimental signals that have one main oscillatory component modulated by slower activity and perturbed by weak, sparse, or random activity at faster time scales. We illustrate how our approach works by estimating the phase dynamics of synthetic signals and real-world signals representing knee angles during flexion/extension activity, heel height during gait, and the activity of different organs involved in speech production.</p></div>\",\"PeriodicalId\":55046,\"journal\":{\"name\":\"Human Movement Science\",\"volume\":\"96 \",\"pages\":\"Article 103249\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167945724000721/pdfft?md5=4e99a68e5136bba829ac0eb1db16a00b&pid=1-s2.0-S0167945724000721-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Movement Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167945724000721\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167945724000721","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Instantaneous phase of rhythmic behaviour under volitional control
The phase of signals representing cyclic behavioural patterns provides valuable information for understanding the mechanisms driving the observed behaviours. Methods usually adopted to estimate the phase, which are based on projecting the signal onto the complex plane, have strict requirements on its frequency content, which limits their application. To overcome these limitations, input signals can be processed using band-pass filters or decomposition techniques. In this paper, we briefly review these approaches and propose a new one. Our approach is based on the principles of Empirical Mode Decomposition (EMD), but unlike EMD, it does not aim to decompose the input signal. This avoids the many problems that can occur when extracting a signal's components one by one. The proposed approach estimates the phase of experimental signals that have one main oscillatory component modulated by slower activity and perturbed by weak, sparse, or random activity at faster time scales. We illustrate how our approach works by estimating the phase dynamics of synthetic signals and real-world signals representing knee angles during flexion/extension activity, heel height during gait, and the activity of different organs involved in speech production.
期刊介绍:
Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome.
These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."