Allyson I Hauptman, Rohit Mallick, Christopher Flathmann, Nathan J McNeese
{"title":"自适应自主队友情境感知设计中的人为因素考虑。","authors":"Allyson I Hauptman, Rohit Mallick, Christopher Flathmann, Nathan J McNeese","doi":"10.1080/00140139.2024.2380341","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the gains in performance that AI can bring to human-AI teams, they also present them with new challenges, such as the decline in human ability to respond to AI failures as the AI becomes more autonomous. This challenge is particularly dangerous in human-AI teams, where the AI holds a unique role in the team's success. Thus, it is imperative that researchers find solutions for designing AI team-mates that consider their human team-mates' needs in their adaptation logic. This study explores adaptive autonomy as a solution to overcoming these challenges. We conducted twelve contextual inquiries with professionals in two teaming contexts in order to understand how human teammate perceptions can be used to determine optimal autonomy levels for AI team-mates. The results of this study will enable the human factors community to develop AI team-mates that can enhance their team's performance while avoiding the potentially devastating impacts of their failures.</p>","PeriodicalId":50503,"journal":{"name":"Ergonomics","volume":" ","pages":"571-587"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human factors considerations for the context-aware design of adaptive autonomous teammates.\",\"authors\":\"Allyson I Hauptman, Rohit Mallick, Christopher Flathmann, Nathan J McNeese\",\"doi\":\"10.1080/00140139.2024.2380341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the gains in performance that AI can bring to human-AI teams, they also present them with new challenges, such as the decline in human ability to respond to AI failures as the AI becomes more autonomous. This challenge is particularly dangerous in human-AI teams, where the AI holds a unique role in the team's success. Thus, it is imperative that researchers find solutions for designing AI team-mates that consider their human team-mates' needs in their adaptation logic. This study explores adaptive autonomy as a solution to overcoming these challenges. We conducted twelve contextual inquiries with professionals in two teaming contexts in order to understand how human teammate perceptions can be used to determine optimal autonomy levels for AI team-mates. The results of this study will enable the human factors community to develop AI team-mates that can enhance their team's performance while avoiding the potentially devastating impacts of their failures.</p>\",\"PeriodicalId\":50503,\"journal\":{\"name\":\"Ergonomics\",\"volume\":\" \",\"pages\":\"571-587\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00140139.2024.2380341\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2380341","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Human factors considerations for the context-aware design of adaptive autonomous teammates.
Despite the gains in performance that AI can bring to human-AI teams, they also present them with new challenges, such as the decline in human ability to respond to AI failures as the AI becomes more autonomous. This challenge is particularly dangerous in human-AI teams, where the AI holds a unique role in the team's success. Thus, it is imperative that researchers find solutions for designing AI team-mates that consider their human team-mates' needs in their adaptation logic. This study explores adaptive autonomy as a solution to overcoming these challenges. We conducted twelve contextual inquiries with professionals in two teaming contexts in order to understand how human teammate perceptions can be used to determine optimal autonomy levels for AI team-mates. The results of this study will enable the human factors community to develop AI team-mates that can enhance their team's performance while avoiding the potentially devastating impacts of their failures.
期刊介绍:
Ergonomics, also known as human factors, is the scientific discipline that seeks to understand and improve human interactions with products, equipment, environments and systems. Drawing upon human biology, psychology, engineering and design, Ergonomics aims to develop and apply knowledge and techniques to optimise system performance, whilst protecting the health, safety and well-being of individuals involved. The attention of ergonomics extends across work, leisure and other aspects of our daily lives.
The journal Ergonomics is an international refereed publication, with a 60 year tradition of disseminating high quality research. Original submissions, both theoretical and applied, are invited from across the subject, including physical, cognitive, organisational and environmental ergonomics. Papers reporting the findings of research from cognate disciplines are also welcome, where these contribute to understanding equipment, tasks, jobs, systems and environments and the corresponding needs, abilities and limitations of people.
All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymous refereeing by independent expert referees.