利用深度学习模型预测干细胞移植后早期巨细胞病毒肺炎。

IF 1.4 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Yanhua Zheng, Ruilin Ren, Teng Zuo, Xuan Chen, Hanxuan Li, Cheng Xie, Meiling Weng, Chunxiao He, Min Xu, Lili Wang, Nainong Li, Xiaofan Li
{"title":"利用深度学习模型预测干细胞移植后早期巨细胞病毒肺炎。","authors":"Yanhua Zheng, Ruilin Ren, Teng Zuo, Xuan Chen, Hanxuan Li, Cheng Xie, Meiling Weng, Chunxiao He, Min Xu, Lili Wang, Nainong Li, Xiaofan Li","doi":"10.3233/THC-240597","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diagnostic challenges exist for CMV pneumonia in post-hematopoietic stem cell transplantation (post-HSCT) patients, despite early-phase radiographic changes.</p><p><strong>Objective: </strong>The study aims to employ a deep learning model distinguishing CMV pneumonia from COVID-19 pneumonia, community-acquired pneumonia, and normal lungs post-HSCT.</p><p><strong>Methods: </strong>Initially, 6 neural network models were pre-trained with COVID-19 pneumonia, community-acquired pneumonia, and normal lung CT images from Kaggle's COVID multiclass dataset (Dataset A), then Dataset A was combined with the CMV pneumonia images from our center, forming Dataset B. We use a few-shot transfer learning strategy to fine-tune the pre-trained models and evaluate model performance in Dataset B.</p><p><strong>Results: </strong>34 cases of CMV pneumonia were found between January 2018 and December 2022 post-HSCT. Dataset A contained 1681 images of each subgroup from Kaggle. Combined with Dataset A, Dataset B was initially formed by 98 images of CMV pneumonia and normal lung. The optimal model (Xception) achieved an accuracy of 0.9034. Precision, recall, and F1-score all reached 0.9091, with an AUC of 0.9668 in the test set of Dataset B.</p><p><strong>Conclusions: </strong>This framework demonstrates the deep learning model's ability to distinguish rare pneumonia types utilizing a small volume of CT images, facilitating early detection of CMV pneumonia post-HSCT.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of early-phase cytomegalovirus pneumonia in post-stem cell transplantation using a deep learning model.\",\"authors\":\"Yanhua Zheng, Ruilin Ren, Teng Zuo, Xuan Chen, Hanxuan Li, Cheng Xie, Meiling Weng, Chunxiao He, Min Xu, Lili Wang, Nainong Li, Xiaofan Li\",\"doi\":\"10.3233/THC-240597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Diagnostic challenges exist for CMV pneumonia in post-hematopoietic stem cell transplantation (post-HSCT) patients, despite early-phase radiographic changes.</p><p><strong>Objective: </strong>The study aims to employ a deep learning model distinguishing CMV pneumonia from COVID-19 pneumonia, community-acquired pneumonia, and normal lungs post-HSCT.</p><p><strong>Methods: </strong>Initially, 6 neural network models were pre-trained with COVID-19 pneumonia, community-acquired pneumonia, and normal lung CT images from Kaggle's COVID multiclass dataset (Dataset A), then Dataset A was combined with the CMV pneumonia images from our center, forming Dataset B. We use a few-shot transfer learning strategy to fine-tune the pre-trained models and evaluate model performance in Dataset B.</p><p><strong>Results: </strong>34 cases of CMV pneumonia were found between January 2018 and December 2022 post-HSCT. Dataset A contained 1681 images of each subgroup from Kaggle. Combined with Dataset A, Dataset B was initially formed by 98 images of CMV pneumonia and normal lung. The optimal model (Xception) achieved an accuracy of 0.9034. Precision, recall, and F1-score all reached 0.9091, with an AUC of 0.9668 in the test set of Dataset B.</p><p><strong>Conclusions: </strong>This framework demonstrates the deep learning model's ability to distinguish rare pneumonia types utilizing a small volume of CT images, facilitating early detection of CMV pneumonia post-HSCT.</p>\",\"PeriodicalId\":48978,\"journal\":{\"name\":\"Technology and Health Care\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology and Health Care\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/THC-240597\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-240597","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:尽管造血干细胞移植(HSCT)后患者的早期影像学改变,但CMV肺炎的诊断仍存在挑战:本研究旨在采用一种深度学习模型,将CMV肺炎与COVID-19肺炎、社区获得性肺炎以及造血干细胞移植术后正常肺部区分开来:首先,用 Kaggle 的 COVID 多类数据集(数据集 A)中的 COVID-19 肺炎、社区获得性肺炎和正常肺 CT 图像预训练 6 个神经网络模型,然后将数据集 A 与本中心的 CMV 肺炎图像合并,形成数据集 B:2018年1月至2022年12月期间,共发现34例HSCT后CMV肺炎病例。数据集 A 包含来自 Kaggle 的每个分组的 1681 张图像。结合数据集 A,数据集 B 最初由 98 张 CMV 肺炎和正常肺部的图像组成。最佳模型(Xception)的准确率为 0.9034。在数据集 B 的测试集中,精确度、召回率和 F1 分数都达到了 0.9091,AUC 为 0.9668:该框架展示了深度学习模型利用少量 CT 图像区分罕见肺炎类型的能力,有助于早期检测 HSCT 后 CMV 肺炎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of early-phase cytomegalovirus pneumonia in post-stem cell transplantation using a deep learning model.

Background: Diagnostic challenges exist for CMV pneumonia in post-hematopoietic stem cell transplantation (post-HSCT) patients, despite early-phase radiographic changes.

Objective: The study aims to employ a deep learning model distinguishing CMV pneumonia from COVID-19 pneumonia, community-acquired pneumonia, and normal lungs post-HSCT.

Methods: Initially, 6 neural network models were pre-trained with COVID-19 pneumonia, community-acquired pneumonia, and normal lung CT images from Kaggle's COVID multiclass dataset (Dataset A), then Dataset A was combined with the CMV pneumonia images from our center, forming Dataset B. We use a few-shot transfer learning strategy to fine-tune the pre-trained models and evaluate model performance in Dataset B.

Results: 34 cases of CMV pneumonia were found between January 2018 and December 2022 post-HSCT. Dataset A contained 1681 images of each subgroup from Kaggle. Combined with Dataset A, Dataset B was initially formed by 98 images of CMV pneumonia and normal lung. The optimal model (Xception) achieved an accuracy of 0.9034. Precision, recall, and F1-score all reached 0.9091, with an AUC of 0.9668 in the test set of Dataset B.

Conclusions: This framework demonstrates the deep learning model's ability to distinguish rare pneumonia types utilizing a small volume of CT images, facilitating early detection of CMV pneumonia post-HSCT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technology and Health Care
Technology and Health Care HEALTH CARE SCIENCES & SERVICES-ENGINEERING, BIOMEDICAL
CiteScore
2.10
自引率
6.20%
发文量
282
审稿时长
>12 weeks
期刊介绍: Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered: 1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables. 2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words. Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics. 4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors. 5.Letters to the Editors: Discussions or short statements (not indexed).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信