Sreema Ma, Jayachandran A, Sudarson Rama Perumal T
{"title":"用于在彩色眼底图像中以像素为单位分割视盘的多维密集注意力网络。","authors":"Sreema Ma, Jayachandran A, Sudarson Rama Perumal T","doi":"10.3233/THC-230310","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Segmentation of retinal fragments like blood vessels, Optic Disc (OD), and Optic Cup (OC) enables the early detection of different retinal pathologies like Diabetic Retinopathy (DR), Glaucoma, etc.</p><p><strong>Objective: </strong>Accurate segmentation of OD remains challenging due to blurred boundaries, vessel occlusion, and other distractions and limitations. These days, deep learning is rapidly progressing in the segmentation of image pixels, and a number of network models have been proposed for end-to-end image segmentation. However, there are still certain limitations, such as limited ability to represent context, inadequate feature processing, limited receptive field, etc., which lead to the loss of local details and blurred boundaries.</p><p><strong>Methods: </strong>A multi-dimensional dense attention network, or MDDA-Net, is proposed for pixel-wise segmentation of OD in retinal images in order to address the aforementioned issues and produce more thorough and accurate segmentation results. In order to acquire powerful contexts when faced with limited context representation capabilities, a dense attention block is recommended. A triple-attention (TA) block is introduced in order to better extract the relationship between pixels and obtain more comprehensive information, with the goal of addressing the insufficient feature processing. In the meantime, a multi-scale context fusion (MCF) is suggested for acquiring the multi-scale contexts through context improvement.</p><p><strong>Results: </strong>Specifically, we provide a thorough assessment of the suggested approach on three difficult datasets. In the MESSIDOR and ORIGA data sets, the suggested MDDA-NET approach obtains accuracy levels of 99.28% and 98.95%, respectively.</p><p><strong>Conclusion: </strong>The experimental results show that the MDDA-Net can obtain better performance than state-of-the-art deep learning models under the same environmental conditions.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"3829-3846"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612978/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-dimensional dense attention network for pixel-wise segmentation of optic disc in colour fundus images.\",\"authors\":\"Sreema Ma, Jayachandran A, Sudarson Rama Perumal T\",\"doi\":\"10.3233/THC-230310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Segmentation of retinal fragments like blood vessels, Optic Disc (OD), and Optic Cup (OC) enables the early detection of different retinal pathologies like Diabetic Retinopathy (DR), Glaucoma, etc.</p><p><strong>Objective: </strong>Accurate segmentation of OD remains challenging due to blurred boundaries, vessel occlusion, and other distractions and limitations. These days, deep learning is rapidly progressing in the segmentation of image pixels, and a number of network models have been proposed for end-to-end image segmentation. However, there are still certain limitations, such as limited ability to represent context, inadequate feature processing, limited receptive field, etc., which lead to the loss of local details and blurred boundaries.</p><p><strong>Methods: </strong>A multi-dimensional dense attention network, or MDDA-Net, is proposed for pixel-wise segmentation of OD in retinal images in order to address the aforementioned issues and produce more thorough and accurate segmentation results. In order to acquire powerful contexts when faced with limited context representation capabilities, a dense attention block is recommended. A triple-attention (TA) block is introduced in order to better extract the relationship between pixels and obtain more comprehensive information, with the goal of addressing the insufficient feature processing. In the meantime, a multi-scale context fusion (MCF) is suggested for acquiring the multi-scale contexts through context improvement.</p><p><strong>Results: </strong>Specifically, we provide a thorough assessment of the suggested approach on three difficult datasets. In the MESSIDOR and ORIGA data sets, the suggested MDDA-NET approach obtains accuracy levels of 99.28% and 98.95%, respectively.</p><p><strong>Conclusion: </strong>The experimental results show that the MDDA-Net can obtain better performance than state-of-the-art deep learning models under the same environmental conditions.</p>\",\"PeriodicalId\":48978,\"journal\":{\"name\":\"Technology and Health Care\",\"volume\":\" \",\"pages\":\"3829-3846\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612978/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology and Health Care\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/THC-230310\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-230310","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Multi-dimensional dense attention network for pixel-wise segmentation of optic disc in colour fundus images.
Background: Segmentation of retinal fragments like blood vessels, Optic Disc (OD), and Optic Cup (OC) enables the early detection of different retinal pathologies like Diabetic Retinopathy (DR), Glaucoma, etc.
Objective: Accurate segmentation of OD remains challenging due to blurred boundaries, vessel occlusion, and other distractions and limitations. These days, deep learning is rapidly progressing in the segmentation of image pixels, and a number of network models have been proposed for end-to-end image segmentation. However, there are still certain limitations, such as limited ability to represent context, inadequate feature processing, limited receptive field, etc., which lead to the loss of local details and blurred boundaries.
Methods: A multi-dimensional dense attention network, or MDDA-Net, is proposed for pixel-wise segmentation of OD in retinal images in order to address the aforementioned issues and produce more thorough and accurate segmentation results. In order to acquire powerful contexts when faced with limited context representation capabilities, a dense attention block is recommended. A triple-attention (TA) block is introduced in order to better extract the relationship between pixels and obtain more comprehensive information, with the goal of addressing the insufficient feature processing. In the meantime, a multi-scale context fusion (MCF) is suggested for acquiring the multi-scale contexts through context improvement.
Results: Specifically, we provide a thorough assessment of the suggested approach on three difficult datasets. In the MESSIDOR and ORIGA data sets, the suggested MDDA-NET approach obtains accuracy levels of 99.28% and 98.95%, respectively.
Conclusion: The experimental results show that the MDDA-Net can obtain better performance than state-of-the-art deep learning models under the same environmental conditions.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).