估算同步数字乳腺断层成像和机械成像的吸收剂量。

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-01-01 Epub Date: 2024-07-24 DOI:10.1117/1.JMI.12.S1.S13003
Anna Bjerkén, Hanna Tomic, Sophia Zackrisson, Magnus Dustler, Predrag R Bakic, Anders Tingberg
{"title":"估算同步数字乳腺断层成像和机械成像的吸收剂量。","authors":"Anna Bjerkén, Hanna Tomic, Sophia Zackrisson, Magnus Dustler, Predrag R Bakic, Anders Tingberg","doi":"10.1117/1.JMI.12.S1.S13003","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Use of mechanical imaging (MI) as complementary to digital mammography (DM), or in simultaneous digital breast tomosynthesis (DBT) and MI - DBTMI, has demonstrated the potential to increase the specificity of breast cancer screening and reduce unnecessary biopsies compared with DM. The aim of this study is to investigate the increase in the radiation dose due to the presence of an MI sensor during simultaneous image acquisition when automatic exposure control is used.</p><p><strong>Approach: </strong>A radiation dose study was conducted on clinically available breast imaging systems with and without an MI sensor present. Our estimations were based on three approaches. In the first approach, exposure values were compared in paired clinical DBT and DBTMI acquisitions in 97 women. In the second approach polymethyl methacrylate (PMMA) phantoms of various thicknesses were used, and the average glandular dose (AGD) values were compared. Finally, a rectangular PMMA phantom with a 45 mm thickness was used, and the AGD values were estimated based on air kerma measurements with an electronic dosemeter.</p><p><strong>Results: </strong>The relative increase in exposure estimated from digital imaging and communications in medicine headers when using an MI sensor in clinical DBTMI was <math><mrow><mn>11.9</mn> <mo>%</mo> <mo>±</mo> <mn>10.4</mn></mrow> </math> . For the phantom measurements of various thicknesses of PMMA, the relative increases in the AGD for DM and DBT measurements were, on average, <math><mrow><mn>10.7</mn> <mo>%</mo> <mo>±</mo> <mn>3.1</mn></mrow> </math> and <math><mrow><mn>11.4</mn> <mo>%</mo> <mo>±</mo> <mn>3.0</mn></mrow> </math> , respectively. The relative increase in the AGD using the electronic dosemeter was <math><mrow><mn>11.2</mn> <mo>%</mo> <mo>±</mo> <mo><</mo> <mn>0.001</mn></mrow> </math> in DM and <math><mrow><mn>12.2</mn> <mo>%</mo> <mo>±</mo> <mo><</mo> <mn>0.001</mn></mrow> </math> in DBT. The average difference in dose between the methods was <math><mrow><mn>11.5</mn> <mo>%</mo> <mo>±</mo> <mn>3.3</mn></mrow> </math> .</p><p><strong>Conclusions: </strong>Our measurements suggest that the use of simultaneous breast radiography and MI increases the AGD by an average of <math><mrow><mn>11.5</mn> <mo>%</mo> <mo>±</mo> <mn>3.3</mn></mrow> </math> . The increase in dose is within the acceptable values for mammography screening recommended by European guidelines.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 1","pages":"S13003"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266811/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimation of the absorbed dose in simultaneous digital breast tomosynthesis and mechanical imaging.\",\"authors\":\"Anna Bjerkén, Hanna Tomic, Sophia Zackrisson, Magnus Dustler, Predrag R Bakic, Anders Tingberg\",\"doi\":\"10.1117/1.JMI.12.S1.S13003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Use of mechanical imaging (MI) as complementary to digital mammography (DM), or in simultaneous digital breast tomosynthesis (DBT) and MI - DBTMI, has demonstrated the potential to increase the specificity of breast cancer screening and reduce unnecessary biopsies compared with DM. The aim of this study is to investigate the increase in the radiation dose due to the presence of an MI sensor during simultaneous image acquisition when automatic exposure control is used.</p><p><strong>Approach: </strong>A radiation dose study was conducted on clinically available breast imaging systems with and without an MI sensor present. Our estimations were based on three approaches. In the first approach, exposure values were compared in paired clinical DBT and DBTMI acquisitions in 97 women. In the second approach polymethyl methacrylate (PMMA) phantoms of various thicknesses were used, and the average glandular dose (AGD) values were compared. Finally, a rectangular PMMA phantom with a 45 mm thickness was used, and the AGD values were estimated based on air kerma measurements with an electronic dosemeter.</p><p><strong>Results: </strong>The relative increase in exposure estimated from digital imaging and communications in medicine headers when using an MI sensor in clinical DBTMI was <math><mrow><mn>11.9</mn> <mo>%</mo> <mo>±</mo> <mn>10.4</mn></mrow> </math> . For the phantom measurements of various thicknesses of PMMA, the relative increases in the AGD for DM and DBT measurements were, on average, <math><mrow><mn>10.7</mn> <mo>%</mo> <mo>±</mo> <mn>3.1</mn></mrow> </math> and <math><mrow><mn>11.4</mn> <mo>%</mo> <mo>±</mo> <mn>3.0</mn></mrow> </math> , respectively. The relative increase in the AGD using the electronic dosemeter was <math><mrow><mn>11.2</mn> <mo>%</mo> <mo>±</mo> <mo><</mo> <mn>0.001</mn></mrow> </math> in DM and <math><mrow><mn>12.2</mn> <mo>%</mo> <mo>±</mo> <mo><</mo> <mn>0.001</mn></mrow> </math> in DBT. The average difference in dose between the methods was <math><mrow><mn>11.5</mn> <mo>%</mo> <mo>±</mo> <mn>3.3</mn></mrow> </math> .</p><p><strong>Conclusions: </strong>Our measurements suggest that the use of simultaneous breast radiography and MI increases the AGD by an average of <math><mrow><mn>11.5</mn> <mo>%</mo> <mo>±</mo> <mn>3.3</mn></mrow> </math> . The increase in dose is within the acceptable values for mammography screening recommended by European guidelines.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"12 Suppl 1\",\"pages\":\"S13003\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266811/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.12.S1.S13003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.S1.S13003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:与数字乳腺X光摄影术(DM)相比,使用机械成像(MI)作为数字乳腺X光摄影术(DM)的补充,或同时使用数字乳腺断层合成术(DBT)和机械成像(MI)--DBTMI,已显示出提高乳腺癌筛查特异性和减少不必要活检的潜力。本研究的目的是调查在使用自动曝光控制时,同步图像采集过程中由于 MI 传感器的存在而增加的辐射剂量:方法:我们对临床可用的乳腺成像系统进行了辐射剂量研究,包括是否存在 MI 传感器。我们的估算基于三种方法。第一种方法是比较 97 名妇女的 DBT 和 DBTMI 成对临床采集的辐射值。第二种方法使用了不同厚度的聚甲基丙烯酸甲酯(PMMA)模型,并比较了平均腺体剂量(AGD)值。最后,使用了厚度为 45 毫米的矩形 PMMA 模型,并根据使用电子剂量计测量的空气珍珠层估算出 AGD 值:结果:在临床 DBTMI 中使用 MI 传感器时,根据数字成像和医学通信标题估算出的照射相对增加率为 11.9% ± 10.4。对于不同厚度的 PMMA 模体测量,DM 和 DBT 测量的 AGD 相对增加率平均分别为 10.7 % ± 3.1 和 11.4 % ± 3.0。在 DM 和 DBT 测量中,使用电子剂量计的 AGD 相对增加率分别为 11.2 % ± 0.001 和 12.2 % ± 0.001。两种方法的平均剂量差异为 11.5 % ± 3.3 :我们的测量结果表明,同时使用乳腺放射摄影和 MI 会使 AGD 平均增加 11.5 % ± 3.3。增加的剂量在欧洲指南建议的乳腺放射摄影筛查可接受值范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of the absorbed dose in simultaneous digital breast tomosynthesis and mechanical imaging.

Purpose: Use of mechanical imaging (MI) as complementary to digital mammography (DM), or in simultaneous digital breast tomosynthesis (DBT) and MI - DBTMI, has demonstrated the potential to increase the specificity of breast cancer screening and reduce unnecessary biopsies compared with DM. The aim of this study is to investigate the increase in the radiation dose due to the presence of an MI sensor during simultaneous image acquisition when automatic exposure control is used.

Approach: A radiation dose study was conducted on clinically available breast imaging systems with and without an MI sensor present. Our estimations were based on three approaches. In the first approach, exposure values were compared in paired clinical DBT and DBTMI acquisitions in 97 women. In the second approach polymethyl methacrylate (PMMA) phantoms of various thicknesses were used, and the average glandular dose (AGD) values were compared. Finally, a rectangular PMMA phantom with a 45 mm thickness was used, and the AGD values were estimated based on air kerma measurements with an electronic dosemeter.

Results: The relative increase in exposure estimated from digital imaging and communications in medicine headers when using an MI sensor in clinical DBTMI was 11.9 % ± 10.4 . For the phantom measurements of various thicknesses of PMMA, the relative increases in the AGD for DM and DBT measurements were, on average, 10.7 % ± 3.1 and 11.4 % ± 3.0 , respectively. The relative increase in the AGD using the electronic dosemeter was 11.2 % ± < 0.001 in DM and 12.2 % ± < 0.001 in DBT. The average difference in dose between the methods was 11.5 % ± 3.3 .

Conclusions: Our measurements suggest that the use of simultaneous breast radiography and MI increases the AGD by an average of 11.5 % ± 3.3 . The increase in dose is within the acceptable values for mammography screening recommended by European guidelines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信