{"title":"为链霉菌底盘开发重编程自然进化开关。","authors":"Hao Yan, Shanshan Li, Weishan Wang","doi":"10.1016/j.tibtech.2024.07.001","DOIUrl":null,"url":null,"abstract":"<p><p>The Streptomyces chassis serves as an important platform for efficient biomanufacture of diverse secondary metabolite (SM) compounds, but the current chassis lacks compatibility for integration of these SM biosynthetic pathways reliably and consistently. This forum discusses harnessing naturally evolved multifaceted switches to reprogram the Streptomyces chassis for biomanufacturing applications.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reprogramming naturally evolved switches for Streptomyces chassis development.\",\"authors\":\"Hao Yan, Shanshan Li, Weishan Wang\",\"doi\":\"10.1016/j.tibtech.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Streptomyces chassis serves as an important platform for efficient biomanufacture of diverse secondary metabolite (SM) compounds, but the current chassis lacks compatibility for integration of these SM biosynthetic pathways reliably and consistently. This forum discusses harnessing naturally evolved multifaceted switches to reprogram the Streptomyces chassis for biomanufacturing applications.</p>\",\"PeriodicalId\":23324,\"journal\":{\"name\":\"Trends in biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibtech.2024.07.001\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.07.001","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Reprogramming naturally evolved switches for Streptomyces chassis development.
The Streptomyces chassis serves as an important platform for efficient biomanufacture of diverse secondary metabolite (SM) compounds, but the current chassis lacks compatibility for integration of these SM biosynthetic pathways reliably and consistently. This forum discusses harnessing naturally evolved multifaceted switches to reprogram the Streptomyces chassis for biomanufacturing applications.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).